
University of São Paulo

São Carlos School of Engineering

Department of Aeronautical Engineering

Author: Caio Augusto Zagria Barbosa

Title: Reinforced Learning for UAV Attitude Control

 São Carlos

2019

Reinforced Learning for UAV Attitude Control 2019

Page 2 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 3 of 69

Author: Caio Augusto Zagria Barbosa

Title: Reinforced Learning for UAV Attitude Control

Monograph presented to the Aeronautical
Engineering Course of the São Carlos School
of Engineering of the University of São Paulo,
as part of the requirements to obtain the title
of Aeronautical Engineer.

Teacher Advisor: Prof. Dr. Jorge Henrique
Bidinotto

Versão Corrigida

São Carlos

2019

Reinforced Learning for UAV Attitude Control 2019

Page 4 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 5 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 6 of 69

ERRATUM

Erratum

Page Line Where is written Should be

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

Reinforced Learning for UAV Attitude Control 2019

Page 7 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 8 of 69

ASSESSMENT OR APPROVAL SHEET

Reinforced Learning for UAV Attitude Control 2019

Page 9 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 10 of 69

RESUMO

Barbosa, C. A. Z. Reinforced Learning for UAV Attitude Control. 2019. 81 f. Monografia (Trabalho de

Conclusão de Curso) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2019

Transportar pessoas é uma tarefa muito complexa e que exige segurança. Um dos principais problemas

é que essa tarefa exige um controlador de atitude extremamente confiável. Entretanto, projetar um

controlador de atitude para quadricópteros de alto desempenho e confiabilidade não é uma tarefa

trivial, pois seu modelo físico possui um alto grau de complexidade: é desejável que os controladores de

vôo para drones de passageiros possam tolerar falhas; adaptar-se às mudanças na carga útil e / ou no

ambiente; e otimizar a trajetória de vôo. O desenvolvimento de sistemas inteligentes de controle de vôo

é uma área ativa de pesquisa, especificamente através do uso de redes neurais artificiais, uma opção

atraente, pois são aproximadores universais e resistentes ao ruído. Através de simulações usando o

ambiente de desenvolvimento em Python, estudamos a exatidão e precisão do controle inteligente de

atitude treinados usando DDPG (Deep Deterministic Policy Gradients) com Reinforced Learning por Ator-

Crítico. O sistema de controle RL será dinâmico, alterando as constantes do PID para tentar estabilizar o

quadricópter. O ator e o crítico serão 2 redes neurais densamente conectadas e distintas, com 2

camadas ocultas. Os resultados serão comparados com o simples controle PID ajustado usando o

método de busca na grade de parâmetros para selecionar os melhores ganhos. Embora nos

concentramos especificamente na criação de controladores para um quadricóptero, os métodos

desenvolvidos por este trabalho aplicam-se a uma ampla gama de aeronaves não tripuladas com vários

rotores e também podem ser estendidos a aeronaves de asa fixa. No final, este trabalho nos mostrou

que é possível controlar um quadricóptero usando técnicas de Reinforced Learning. No entanto, o

modelo convergiu apenas para ângulos pequenos, o que torna impossível comparar o resultado do PID

original com os resultados do controlador RL. No entanto, não podemos dizer que o PID é melhor que o

RL ou o contrário é verdadeiro porque a estabilidade do RL e a resposta a condições não lineares,

alterações na carga útil e perturbações externas não foram testadas. Para trabalhos futuros, além de

testar a estabilidade do controlador RL, é recomendável tentar a pesquisa numa grade de parâmetros

para otimizar o hiperparâmetros , bem como a normalização de minilote.

Palavras-chave: UAV. Técnicas de Controle. Reinforced Learning. PID.

Reinforced Learning for UAV Attitude Control 2019

Page 11 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 12 of 69

ABSTRACT

Barbosa, C. A. Z. Reinforced Learning for UAV Attitude Control. 2019. 81 f. Monografia (Trabalho de

Conclusão de Curso) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2019.

Carrying people is a very complex and safety demanding task. One of the main problems is that this task

demands a good reliable attitude controller. Therefore, designing an quadcopter attitude controller with

superior performance, is not a trivial task as its physical model has some high degree of complexity: is

desirable that passenger UAV flight controllers are able to tolerate faults; adapt to changes in the

payload and/or the environment; and to optimize flight trajectory, to name a few. The development of

intelligent flight control systems is an active area of research, specifically through the use of artificial

neural networks which are an attractive option given they are universal approximators and resistant to

noise. Through simulations using Python environment, we study the accuracy and precision of attitude

control provided by intelligent flight controllers trained using Deep Deterministic Policy Gradients

(DDPG) with Actor-Critic Reinforced Learning. The RL control system will be dynamic changing the PID

constants while trying to stabilize the quadcopter. The actor and critic will be 2 different fully dense

connected neural networks with 2 hidden layers. Results will be compared over simple PID control tuned

using parameter grid search method to selecting the gains. While we specifically focus on the creation of

controllers for a quadcopter, the methods developed hereby apply to a wide range of multi-rotor UAVs,

and can also be extended to fixed-wing aircraft. At the end, this work has shown us that is possible to

control a quadcopter using Reinforced Learning techniques. However, the model only converged for

small angles, what makes impossible to compare the original PID result with the Reinforced Learning

results. However, we cannot say that PID is better than RL or the opposite is true because the RL

stability and response to non-linear conditions, payload change as well as external perturbations were

not tested. For future works, in addition to testing the RL stability, is recommended to try parameter

grid search optimization for the Reinforced Learning control as well as mini-batch normalization.

Keywords: UAV. Control Techniques. Reinforced Learning. PID.

Reinforced Learning for UAV Attitude Control 2019

Page 13 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 14 of 69

INDEX OF FIGURES

Figure 1.1: General Atomics MQ-9 Reaper – .. 21

Figure 1.2: Quadcopter (Q450 Model based) – Subcategory of UAV ... 21

Figure 1.3: Bombs over Venice - First UAVs in history .. 22

Figure 1.4: The Q2A/C targets were the first unmanned drone targets used by the Navy at WSMR

starting in 1959. .. 22

Figure 1.5: BQM-34 Firebee ready to be lunched from a ... 23

Figure 1.6: Predator RQ-1L UAV ... 24

Figure 1.7: Oehmichen No 2 Quadcopter ... 25

Figure 1.8:Convertawings Model A Quadcopter .. 25

Figure 1.9: First Electric Passenger Drone - Ehang 184... 26

Figure 1.10: Inner-loop and Outer-loop applied for UAV control (illustrative) .. 27

Figure 2.1: The inertial and body frames of quadcopter .. 29

Figure 2.2: Reinforced Learning - Example ... 36

Figure 2.3: Reinforced Learning - Basic schematic ... 37

Figure 2.4: Reinforced Learning taxonomy as defined by openAI .. 38

Figure 2.5: Schematic overview of an actor-critic algorithm. ... 48

Figure 2.6: A fully connected layer in a deep network ... 51

Figure 2.7: A multilayer deep fully connected network ... 52

Figure 2.8: Dropout randomly drops neurons from a network while training. Empirically, this technique

often provides powerful regularization for network training. ... 53

Figure 3.1: Actor Neural Network architecture .. 56

Figure 3.2: Critic Neural Network architecture ... 56

Figure 4.1: PID controller response – 3D Coordinates .. 59

Figure 4.2: PID controller response – 3D path .. 60

Figure 4.3: PID controller response – Angular Velocities .. 60

Figure 4.5: Reinforced Learning controller response – 3D Coordinates ... 61

Figure 4.6: Reinforced Learing controller response – 3D path ... 62

Figure 4.7: Reinforced Learning controller response – Angular Velocities ... 62

Reinforced Learning for UAV Attitude Control 2019

Page 15 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 16 of 69

INDEX OF TABLES

Table 1: DJI Phantom 2 - Parameters .. 54

Table 2: Dropout table .. 57

Reinforced Learning for UAV Attitude Control 2019

Page 17 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 18 of 69

TABLE OF CONTENTS

ERRATUM .. 6

ASSESSMENT OR APPROVAL SHEET .. 8

RESUMO .. 10

ABSTRACT .. 12

INDEX OF FIGURES .. 14

INDEX OF TABLES .. 16

TABLE OF CONTENTS ... 18

1. Introduction .. 21

2. Background ... 29

2.1 Quadcopter Mathematical Modelling .. 29

2.1.1 Newton-Euler Equations ... 31

2.1.2 Aerodynamical Effects .. 32

2.2 Quadcopter Control Theory .. 33

2.2.1 PD Control ... 33

2.2.2 PID Control .. 35

2.3 Reinforced Learning .. 36

2.3.1 Elements of Reinforced Learning .. 37

2.4 Reinforcement Learning Algorithms ... 37

2.4.1 Model-Free Reinforced Learning .. 38

2.4.1.1 Policy optimization or policy-iteration methods .. 38

Policy Gradient (PG) .. 38

Asynchronous Advantage Actor-Critic (A3C) .. 39

Trust Region Policy Optimization (TRPO) .. 39

Proximal Policy Optimization (PPO) .. 39

2.4.1.2 Q-learning or value-iteration methods ... 39

Deep Q Neural Network (DQN) ... 40

Distributional Reinforcement Learning with Quantile Regression (QR-DQN) 40

2.4.1.3 Hybrid .. 40

2.4.2 Model-Base Reinforced Learning .. 40

Reinforced Learning for UAV Attitude Control 2019

Page 19 of 69

2.4.2.1 Learn the Model .. 40

2.4.2.2 Given the Model ... 41

2.5 Talking about Reward ... 41

2.5.1 Discounted Reward ... 42

2.5.2 Average Reward .. 43

2.6 Talking about Stochastic Policy Gradient Theorems ... 44

2.6.1 Theorem 1 (Policy Gradient) ... 44

2.6.2 Theorem 2 (Policy Gradient with Function Approximation) .. 45

2.7 Talking about Deterministic Policy Gradients ... 45

2.8 Actor-Critic Reinforced Learning ... 46

2.8.1 Critic-Only Methods .. 46

2.8.2 Actor-only Methods and the Policy Gradient ... 47

2.8.3 Actor-Critic Algorithms – Stochastic ... 48

2.8.4 Actor-Critic Algorithms – Deterministic .. 50

2.9 Neural Network – Function Approximator ... 50

2.9.1 What is a Fully Connected Deep Network? .. 50

2.9.2 Dropout Regularization ... 52

3. Methodology ... 54

3.1 Quadcopter Simulation – RL Environment ... 54

3.2 RL Reward method .. 55

3.3 Actor and Critic – Structure and Training ... 55

4. Results ... 59

4.1 PID Controlled Response ... 59

4.2 Reinforced Learning Response – (RL + PD controller) .. 61

5. Conclusions ... 63

6. References .. 64

Reinforced Learning for UAV Attitude Control 2019

Page 20 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 21 of 69

1. Introduction
Before proceed with a brief history of UAVs and quadcopters, let’s see 2 important definitions. These

definitions were found and copied online from ‘Drone and Quadcopter’ website: [1]

 “Drone” is a broad term used to describe any kind of unmanned aerial vehicle (UAV). As such, it can

be used to describe both UAVs that are remotely controlled and those that are controlled by

onboard computers. These types of aerial craft can look either like a small airplane or like a

helicopter. They generally have two characteristics that set them apart as drones: They are engine-

controlled, and they can fly for long periods of time.

 “Quadcopter” is a more specific term used to refer to a drone that is controlled by four rotors. It is

also called a quadrotor or a quadrotor helicopter. The rotors on the quadcopter each consist of a

motor and a propeller. In addition, these UAVs are always controlled remotely instead of being

controlled by a pre-programmed, onboard computer. Quadcopters resemble helicopters, but

balance themselves by the movement of the blades and not by the use of a tail rotor. It is also a

subcategory of “multirotor”.

Figure 1.1: General Atomics MQ-9 Reaper –
Fixed Wing (subcategory) UAV

Source: Wikipedia (2019)

Figure 1.2: Quadcopter (Q450 Model based) –
Subcategory of UAV

Source: Elecbits (2019)

The first stop in our drone history timeline is the very early history of drones. By this definition, the

earliest unmanned aerial vehicle in the history of drones was seen in 1839, when Austrian soldiers

attacked the city of Venice with unmanned balloons filled with explosives. [2]

Some of these Austrian Balloons were successful, but a number of them blew back and bombed the

Austrians’ own lines, so the practice did not become widely adopted (clever decision). However, the

invention of winged aircraft changed everything for manned and unmanned vehicles alike.

Reinforced Learning for UAV Attitude Control 2019

Page 22 of 69

Figure 1.3: Bombs over Venice - First UAVs in history

Source: History Today (Volume 8 Issue 6 June 1958)

Already in 1951, in the USA, the first modern UAV, known as Firebee (Q2A), appears. Using a

rudimentary datalink, it was remotely controlled by the operator aboard a nearby military aircraft. And

their mission was to help train fighter pilots, helping them adapt to the new generation of modern

aircraft and weaponry for intercepting enemy aircraft. Also, it is observed that such UAVs did not have

any control system for their self-stabilization, depending only on the expertise of their operator.

Figure 1.4: The Q2A/C targets were the first unmanned drone
targets used by the Navy at WSMR starting in 1959.

Source: White Sands Missile Range Museum

Reinforced Learning for UAV Attitude Control 2019

Page 23 of 69

So, following the escalating tensions of the end of the Cold War and the Vietnam War, the US attempted

to develop new UAVs for aerial surveillance and attack, but was unsuccessful. They therefore upgraded

the Firebee UAVs, increasing their autonomy to up to 8 flight hours and receiving, for the first time, a

control system that allowed pre-programmed missions and even autonomous flight on some routes.

These were called the BQM-34 Firebee and, launched from the C-130 Hercules, were widely used

successfully during the Vietnam War and the Yom Kippur War for aerial surveillance and as baits for the

discovery of anti-aircraft batteries. Its last use occurred in the operation "Iraq Freedom" which began in

2003 after the 9/11 attacks.

Figure 1.5: BQM-34 Firebee ready to be lunched from a
C-130 Hercules

Source: Wikipedia (2019)

In 1995, the Predator RQ-1L UAV (General Atomics) was the first deployed UAV to the Balkans and was

proved very effective for surveillance and tracking targets.

The terrorist attacks on the US in 2001 led to the so-called 'war on terror' and a decisive shift in the

military strategy of the US and its allies. The war on terror has been a battle waged against asymmetric

opposition – usually small groups, or even individuals, who may be dispersed, highly mobile and located

in remote locations. The US response to these challenges has been a policy of persistent surveillance

and a significant increase in the speed and versatility of attacks: developing capabilities for persistent

surveillance, tracking, and rapid engagement.

Reinforced Learning for UAV Attitude Control 2019

Page 24 of 69

Figure 1.6: Predator RQ-1L UAV

Source: General Atomics

Armed Predator operational flights over Afghanistan began on 7 October 2001 [7] with the first Predator

drone strike taking place in early November 2001. Details of this first strike, like much that information

about drone wars, is swathed in secrecy and confusion. In the first two months of operations in

Afghanistan, some 525 targets were laser designated by Predators and, according to Pete Singer, author

of Wired for War, “”the generals who once had no time for such systems couldn’t get enough of

them.”[8]

A year later in November 2002 the first lethal operation using a Predator drone took place in Yemen.

This time there were no other aircraft involved, just a Predator being controlled by a pilot sitting at

Camp Lemmonier in Djibouti. [9]

Greatly accelerated by the use of UAVs in the American war in Afghanistan (2001), there was given rise

to a number of researches that eventually created the new and modern UAVs and their diverse areas of

activity, not just military, as we know it today [4].

According to a recent report by Goldman Sachs [11], military spending will remain the main driver of

drone spending in the coming years. Goldman estimates that global militaries will spend $70 billion on

drones by 2020, and these drones will play a vital role in the resolution of future conflicts and in the

replacement of the human pilot.

But, what about the quadcopters in this context? Quadcopters were among the first vertical take-off and

landing vehicles (VTOLs) and its history goes back to 1920 with Oehmichen 2, invented by Etienne

Oehmichen. This aircraft made 1000 successful flights and flew a recorded distance of 360 meters.

Earlier helicopters used tail rotors to counterbalance the torque, or rotating force, generated by a single,

main rotor. The tail rotor on a single rotor helicopter design consumes between 10 and 15% of the

engine power, yet it creates no lift or forward thrust. Part of the main rotor rotates over the fuselage,

pushing down washed air against it, reducing effective lift. This was wasteful and inefficient. Engineers

developed quadcopters to solve the problems that helicopter pilots had with making vertical flights.

Reinforced Learning for UAV Attitude Control 2019

Page 25 of 69

Figure 1.7: Oehmichen No 2 Quadcopter

Source: Wikipedia (2019)

Around the same time George de Bothezat built and tested his quadcopter for the US army, completing

a number of test flights before the program was scrapped. The ‘Convertawings Model A’ quadcopter

designed by Dr. George E Bothezat, appeared in 1956. It was the first to use propulsion, or a propeller’s

forward thrust, to control an aircraft’s roll, pitch and yaw. The Curtis Wright V27, developed by the

Curtis Wright Company, followed in 1958.

Figure 1.8:Convertawings Model A Quadcopter

Source: Aviastar (1969)

Early quadcopters would typically have the engine sitting somewhere centrally in the fuselage of the

copter, driving the 4 rotors via belts or shafts. Belts and shafts however are heavy and importantly,

subject to breakage. As the 4 rotors of a quadcopter are all slightly different from each other, a

quadcopter is not naturally stable, simply running 4 rotors at the same speed, while producing enough

Reinforced Learning for UAV Attitude Control 2019

Page 26 of 69

lift to hover the copter, does NOT produce stable flight. On the contrary, quadcopters have to be

constantly stabilized. In the absence of computers, this meant a monumental workload for the pilot. [16]

As a result, multicopter designs were abandoned in favor of single, or on rare occasions for very large

transport helicopters, double rotor designs.

However, with the advent of electric motors and especially microelectronics and micromechanical

devices, a few years ago, it became possible to build reliable and efficient multirotor. Modern

multicopters have an electric motor mated to each rotor, sitting directly below or above it. A flight

computer constantly monitors the orientation of the copter and corrects for instability by changing not

the pitch of the rotors but simply the rpm of the individual motors/rotors. This fixed pitch design is

much simpler than the complex swashplate mechanics that are required for single rotor helicopters.

Today you can buy quadrotor drones—also known as quadcopters—of just about any kind, for just

about any price. The extremely wealthy can buy gold-plated quads, and the rest of us can buy tiny

plastic ones. And, most important for this work, the scaling up of this to aircraft that are able to carry

people has only just begun. [15]

Figure 1.9: First Electric Passenger Drone - Ehang 184

Source: Wikipedia (2019)

Carrying people is a very complex and safety demanding task. There are many rules and regulatory

agencies analyzing this problem before finally allow people transportation using quadcopters or

multirotor, and thus today there is not certified multirotor for this task. One of the main problems is

that this task demands a good reliable attitude controller. Therefore, designing an attitude controller

with superior performance is one of the most common and important efforts that researchers all around

the world are nowadays undertaking. [17]

Reinforced Learning for UAV Attitude Control 2019

Page 27 of 69

Controlling the quadcopter dynamics is not a trivial task as its physical model has some high degree of

complexity. Santos et al. [18] presented an algorithm to accomplish quadcopter trajectory tracking tasks

by controlling the altitude through an adaptive dynamic controller that was capable of dealing with

uncertainties in model parameters. Jayakrishnan [19] and Xiong et al. [20] used the sliding mode control

(SMC) technique to control the horizontal position and attitude while also providing a significant

improvement of altitude control. In other studies [21–23], the second order SMC method was also used

to improve quadcopter altitude control performances. Yet another method was presented by Muliadi et

al. [24], where the authors proposed a neural network approach to control UAV altitude dynamics. The

results obtained with this method were verified through comparisons with a conventional proportional–

integral–derivative (PID) control system. However, these approaches [18–24] have a common

disadvantage in that the SMC technique generates a high chattering control signal method which

reduces the lifetime of the entire system.

Although several control methods have been proposed in the literature, PID control has become the

most widely used technique in a variety of applications all over the world because it is simple and easy

to design and typically delivers a satisfactory performance. The PID approach was used in many studies

[25–31] to achieve not only quadcopter altitude control, but also attitude stabilization and horizontal

position control. In recent studies [32–35], the authors proposed the use of a multi-loop control

architecture (i.e., inner-loop and outer-loop) to control quadcopters in specific applications. The outer-

loop controllers were designed in different ways while the inner-loop controllers were all implemented

using the PID control law.

Figure 1.10: Inner-loop and Outer-loop applied for UAV control (illustrative)

Source: Joukhadar, Abdulkader et al. (2019)

Nevertheless, the conventional PID controller has several limitations. First, their fixed gains limit system

performance over a wider operational range. When the required range of operation is large, the

conventional PID controller is prone instability, because the nonlinearities in the system cannot be

properly dealt with. Second, as conventional PIDs are based on a linear model, their performance may

suffer in a nonlinear system like a quadcopter. Several studies have attempted to overcome these

shortcomings. Phi et al. [36] presented a gain scheduling PID controller which determines the PID gains

Reinforced Learning for UAV Attitude Control 2019

Page 28 of 69

by linearly adjusting the gain as a function of tracking errors. In another approach [37], the authors used

a pickup table to schedule the PID gains in a quadrotor fault tolerant control task. Both methods were

able to improve the control performance under different operating conditions. However, it is still a

linear control law which means that it may not perform well in non-linear systems. Furthermore,

scheduling the gains results in discontinuous transitions which may result in sudden jerks or oscillations.

The references indicate that most of the existing methods either are complex to design and implement

or require great computational resources. Meanwhile, PID control law appears to play an important role

for finding a simple and efficient control method for a variety of systems. When exposed to unknown

dynamics (e.g. wind, variable payloads, voltage sag, etc), a PID controller can be far from optimal and

unsafe for people transportation [45].

However is desirable that passenger UAV flight controllers are able to tolerate faults; adapt to changes

in the payload and/or the environment; and to optimize flight trajectory, to name a few. So, a simple PID

controller would not achieve the necessary performance. What about a intelligent flight controller?

The development of intelligent flight control systems is an active area of research [46], specifically

through the use of artificial neural networks which are an attractive option given they are universal

approximators and resistant to noise [47].

Online learning methods (e.g. [48]) have the advantage of learning the aircraft dynamics in real-time.

The main limitation with online learning is that the flight control system is only knowledgeable of its past

experiences. It follows that its performances are limited when exposed to a new event. Training models

offline using supervised learning is problematic as data is expensive to obtain and derived from

inaccurate representations of the underlying aircraft dynamics (e.g. flight data from a similar aircraft

using PID control) which can lead to suboptimal control policies [49], [50], [51].

An alternative to supervised learning for creating offline models is known as reinforcement learning (RL).

In RL an agent is given a reward for every action it makes in an environment with the objective to

maximize the rewards over time. Using RL could make possible to develop optimal control policies for a

UAV without making any assumptions about the aircraft dynamics.

In this context, through simulations using Python environment, will be done the study of accuracy and

precision of attitude control provided by intelligent flight controllers trained using Deep Deterministic

Policy Gradients (DDPG) with Actor-Critic Reinforced Learning. The RL control system will be dynamic

changing the PID constants while trying to stabilize the quadcopter. The actor and critic will be 2

different fully dense connected neural networks (MLP) with 2 hidden layers. Results will be compared

over simple PID control tuned using parameter grid search method to selecting the gains. While this

work specifically focus on the creation of controllers for a quadcopter, the methods developed hereby

apply to a wide range of multi-rotor UAVs, and can also be extended to fixed-wing aircraft.

Reinforced Learning for UAV Attitude Control 2019

Page 29 of 69

2. Background
In this chapter, some background knowledge will be explained. Even if you already know the concepts

shown here, is always good to remember .

2.1 Quadcopter Mathematical Modelling

This item presents the differential equations of the quadcopter dynamics. They are derived from the

Newton-Euler equations. Luukkonen [52] made a very clear and nice paper about modelling the

quadcopter dynamics, his job will be reproduced here.

The quadcopter structure is presented in Figure 2.1 including the corresponding angular velocities,

torques and forces created by the four rotors (numbered from 1 to 4).

Figure 2.1: The inertial and body frames of quadcopter

Source: Luukkonen (2011)

The absolute linear position of the quadcopter is defined in the inertial frame 𝑥, 𝑦, 𝑧 – axes with ξ. The

attitude, i.e. the angular position, is defined in the inertial frame with three Euler angles η. Pitch angle θ

determines the rotation of the quadcopter around the y-axis. Roll angle Ф determines the rotation

around the x-axis and yaw angle ψ around the z-axis. Vector q contains the linear and angular position

vectors

Equation 1

𝜉 = [
𝑥
𝑦
𝑧
], 𝜂 = [

𝛷
𝜃
𝜓

],
𝑞 = [

𝜉
𝜂
].

The origin of the body frame is in the center of mass of the quadcopter. In the body frame, the linear

velocities are determined by 𝑽𝑩 and the angular velocities by ѵ

Reinforced Learning for UAV Attitude Control 2019

Page 30 of 69

Equation 2

𝑉𝐵 = [

𝑣𝑥,𝐵

𝑣𝑦,𝐵

𝑣𝑧,𝐵

], ѵ = [
𝑝
𝑞
𝑟
].

The rotation matrix from the body frame to the inertial frame is:

Equation 3: Rotation matrix

In which 𝑺𝒙 = 𝐬𝐢𝐧(𝒙) and 𝑪𝒙 = 𝐜𝐨𝐬 (𝒙). The rotation matrix R is the orthogonal thus 𝑹−𝟏 = 𝑹𝑻 which is

the rotation matrix from the inertial frame to the body frame.

The transformation matrix for angular velocities from the inertial frame to the body frame is 𝑾𝜼, and

from the body frame to the inertial frame is 𝑾𝜼
−𝟏, as shown in [53],

Equation 4

𝜂̇ = 𝑊𝜂
−1ѵ ,

[

𝜙̇

𝜃̇
𝜓̇

] = [

1 𝑆𝜙𝑇𝜃 𝐶𝜙𝑇𝜃

0 𝐶𝜙 −𝑆𝜙

0 𝑆𝜙/𝐶𝜃 𝐶𝜙/𝐶𝜃

] [
𝑝
𝑞
𝑟
]

ѵ = 𝑊𝜂𝜂̇ , [
𝑝
𝑞
𝑟
] = [

1 0 −𝑆𝜃

0 𝐶𝜙 𝐶𝜃𝑆𝜙

0 −𝑆𝜙 𝐶𝜃𝐶𝜙

] [

𝜙̇

𝜃̇
𝜓̇

]

In which 𝑻𝒙 = 𝐭𝐚𝐧 (𝒙). The matrix 𝑾𝜼 is invertible if 𝜃 ≠ (2𝑘 − 1)𝜙/2, (𝑘 ∈ ℤ).

The quadcopter is assumed to have symmetric structure with the four arms aligned with the body x- and

y-axes. Thus, the inertia matrix is diagonal matrix 𝑰 in which 𝑰𝒙𝒙 = 𝑰𝒚𝒚

Equation 5: Inertia matrix

𝑰 = [

𝑰𝒙𝒙 𝟎 𝟎
𝟎 𝑰𝒚𝒚 𝟎

𝟎 𝟎 𝑰𝒛𝒛

]

The angular velocity of rotor 𝒊, denoted with 𝝎𝒊, creates force 𝒇𝒊 in the direction of the rotor axis. The

angular velocity and acceleration of the rotor also create torque 𝝉𝑴𝒊 around the rotor axis

Reinforced Learning for UAV Attitude Control 2019

Page 31 of 69

Equation 6

𝑓𝑖 = 𝑘𝜔𝑖
2, 𝜏𝑀𝑖

= 𝑏𝜔𝑖
2 + 𝐼𝑀𝜔𝑖̇ ,

In which the lift constant in 𝒌, the drag contant is 𝒃 and the inertia moment of the rotor is 𝑰𝑴. Usually

the effect of 𝝎𝒊̇ is considered small and thus it is omitted.

The combined forces of rotors create thrust 𝑻 in the direction of the body z-axis. Torque 𝝉𝑩 consists of

the torques 𝝉𝝓, 𝝉𝜽 and 𝝉𝝍in the direction of the corresponding body frame angles

Equation 7

𝑇 = ∑𝑓𝑖

4

𝑖=1

= 𝑘 ∑𝜔𝑖
2

4

𝑖=1

 𝑇𝐵 = [
0
0
𝑇
]

𝜏𝐵 = [

𝜏𝜙

𝜏𝜃

𝜏𝜓

] =

[

𝑙 𝑘 (−𝜔2

2 + 𝜔4
2)

𝑙 𝑘 (−𝜔1
2 + 𝜔4

2)

∑ 𝜏𝑀𝑖

4

𝑖=1]

in which 𝒍 is the distance between the rotor and the center of mass of the quadcopter. Thus, the roll

movement is acquired by decreasing the 2nd rotor velocity and increasing the 4th rotor velocity.

Similarly, the pitch movement is acquired by decreasing the 1st rotor velocity and increasing the 3th

rotor velocity. Yaw movement is acquired by increasing the the angular velocities of two opposite rotors

and decreasing the velocities of the other two.

2.1.1 Newton-Euler Equations

The quadcopter is assumed to be rigid body and thus Newton-Euler equations can be used to describe

its dynamics. In the body frame, the force required for the acceleration of mass 𝑚𝑽𝑩̇ and the centrifugal

force ѵ × (𝑚𝑽𝑩) are equal to the gravity 𝑹𝑻𝑮 and the total thrust of the rotors 𝑻𝑩

Equation 8

𝑚𝑉̇𝐵 + ѵ × (𝑚𝑉𝐵) = 𝑅𝑇𝐺 + 𝑇𝐵

In the inertial frame, the centrifugal force is nullified. Thus, only the gravitational force and the

magnitude and direction of the thrust are contributing in the acceleration of the quadcopter

Equation 9

𝑚𝜉̈ = 𝐺 + 𝑅𝑇𝐵,

Reinforced Learning for UAV Attitude Control 2019

Page 32 of 69

[
𝑥̈
𝑦̈
𝑧̈
] = −𝑔 [

0
0
1
] +

𝑇

𝑚
[

𝐶𝜓𝑆𝜃𝐶𝜙 + 𝑆𝜓𝑆𝜙

𝑆𝜓𝑆𝜃𝐶𝜙 − 𝐶𝜓𝑆𝜙

𝐶𝜃𝐶𝜙

].

In the body frame, the angular acceleration of the inertia 𝑰ѵ̇, the centripetal forces ѵ × (𝑰ѵ) and the

gyroscopic forces 𝜞 are equal to the external torque 𝝉

Equation 10

𝐼ѵ̇ + ѵ × (𝐼ѵ) + Γ = 𝜏

ѵ̇ = 𝐼−1 (−[
𝑝
𝑞
𝑟
] × [

𝐼𝑥𝑥𝑝
𝐼𝑦𝑦𝑞

𝐼𝑧𝑧𝑟
] − 𝐼𝑟 [

𝑝
𝑞
𝑟
] × [

0
0
1
]𝜔Γ + 𝜏)

[
𝑝̇
𝑞̇
𝑟̇

] = [

(𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟/𝐼𝑥𝑥

(𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑟/𝐼𝑦𝑦

(𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞/𝐼𝑧𝑧

] − 𝐼𝑟 [
𝑞/𝐼𝑥𝑥

−𝑝/𝐼𝑦𝑦

0

]𝜔Γ + [

𝜏𝜙/𝐼𝑥𝑥

𝜏𝜃/𝐼𝑦𝑦

𝜏𝜓/𝐼𝑧𝑧
]

In which 𝝎𝚪 = 𝜔1 − 𝜔2 + 𝜔3 − 𝜔4. The angular accelerations in the inertial frame are then attracted

from the body frame accelerations with the transformation matrix 𝑾𝜼
−𝟏 and its time derivative

Equation 11

𝜂̈ =
𝑑

𝑑𝑡
(𝑊𝜂

−1ѵ) =
𝑑

𝑑𝑡
(𝑊𝜂

−1)ѵ + 𝑊𝜂
−1ѵ̇

= [

0 𝜙̇𝐶𝜙𝑇𝜃 + 𝜃̇𝑆𝜙/𝐶𝜃
2 𝜙̇𝑆𝜙𝐶𝜃 + 𝜃̇𝐶𝜙/𝐶𝜃

2

0 −𝜙̇𝑆𝜙 −𝜙̇𝐶𝜙

0 𝜙̇𝐶𝜙/𝐶𝜃 + 𝜙̇𝑆𝜙𝑇𝜃/𝐶𝜃 −𝜙̇𝑆𝜙/𝐶𝜃 + 𝜃̇𝐶𝜙𝑇𝜃/𝐶𝜃

] ѵ + 𝑊𝜂
−1ѵ̇

2.1.2 Aerodynamical Effects

The preceding model is a simplification of complex dynamic interactions. To enforce more realistically

behavior of the quadcopter, drag force generated by the air resistance is included. This is devised to

Equation 9 and Erro! Fonte de referência não encontrada. with the diagonal coefficient matrix

associating the linear velocities to the force slowing the movement, as in [55],

Equation 12

[
𝑥̈
𝑦̈
𝑧̈
] = −𝑔 [

0
0
1
] +

𝑇

𝑚
 [

𝐶𝜓𝑆𝜃𝐶𝜙 + 𝑆𝜓𝑆𝜙

𝑆𝜓𝑆𝜃𝐶𝜙 − 𝐶𝜓𝑆𝜙

𝐶𝜃𝐶𝜙

] −
1

𝑚
 [

𝐴𝑥 0 0
0 𝐴𝑦 0

0 0 𝐴𝑧

] [
𝑥̇
𝑦̇
𝑧̇
]

In which 𝑨𝒙, 𝑨𝒚 and 𝑨𝒛 are the drag force coefficients for velocities in the corresponding directions of

the inertial frame.

Reinforced Learning for UAV Attitude Control 2019

Page 33 of 69

Several other aerodynamical effects could be included in the model. For example, dependence of thrust

on angle of attack, blade flapping and airflow distruptions have been studied in [56] and [57]. The

influence of aerodynamical effects are complicated and the effects are difficult to model. Also some of

the effects have significant effect only in high velocities. Thus, these effects are excluded from the

model and the presented simple model is used.

2.2 Quadcopter Control Theory

Deriving a simplified quadcopter mathematical model makes possible the design of a control system.

The inputs to the system consist of the angular velocities of each rotor. Note that in the simplified model

they are only the square of the angular velocities, 𝝎𝒊
𝟐, and never the angular velocity itself, 𝝎𝒊. For

notation simplicity, the inputs will be assumed as 𝜸𝒊 = 𝝎𝒊
𝟐. Since 𝝎𝒊 can be set, 𝜸𝒊 is clearly set as well.

With this, now is possible to write the system as a first order differential equation in state space. Let 𝒙𝟏

be the position in space of the quadcopter, 𝒙𝟐 be the quadcopter linear velocity, 𝒙𝟑 be the roll, pitch,

and yaw angles, and 𝒙𝟒 be the angular velocity vector. (Note that all of these are 3-vectors)

With these being the current state, let’s write the state space equations for the evolution of it.

Equation 13

𝑥1̇ = 𝑥2

𝑥2̇ = [
0
0

−𝑔
] +

1

𝑚
𝑅𝑇𝐵 +

1

𝑚
𝐹𝐷

𝑥3̇ = [

1 0 −𝑠𝜃

0 𝑐𝜙 𝑐𝜃𝑠𝜙

0 −𝑠𝜙 𝑐𝜃𝑐𝜙

]

−1

𝑥4

𝑥4̇ =

[

 (𝜏𝜙𝐼𝑥𝑥)

−1

(𝜏𝜃𝐼𝑦𝑦)
−1

(𝜏𝜓𝐼𝑧𝑧)
−1

]

−

[

𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
𝜔𝑦𝜔𝑧

𝐼𝑧𝑧 − 𝐼𝑥𝑥

𝐼𝑦𝑦
𝜔𝑥𝜔𝑧

𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
𝜔𝑥𝜔𝑦]

Note that the inputs are not used in these equations directly. However allow us to choose values for 𝝉

and 𝑻, and then solve for values of 𝜸𝒊.

2.2.1 PD Control

This section will bring a brief and simplified explanation about the PD control, how to integrate this

control with the RL control will be explained later.

Reinforced Learning for UAV Attitude Control 2019

Page 34 of 69

As the main objective is to control the angular velocities and position, the PID control will only be able to

use the angle derivatives in the controller; these measured values will give the derivative of the error,

and their integral will provide the actual error. For Cartesian position control, the procedures are the

same however the dynamic mathematical model refers to the outer loop control (Figure 1.10). For this

work, the idea is only to stabilize the quadcopter in a horizontal position, so the desired velocities and

angles will all be at zero. Torques are related to the angular velocities by 𝝉 = 𝑰𝜽̈, so let’s set the torques

proportional to the output of our controller, with 𝝉 = 𝑰𝒖(𝒕). Thus,

Equation 14

[

𝜏𝜙

𝜏𝜃

𝜏𝜓

] =

[

 −𝐼𝑥𝑥 (𝐾𝑑𝜙̇ + 𝐾𝑝 ∫ 𝜙̇𝑑𝑡

𝑡

0

)

−𝐼𝑦𝑦 (𝐾𝑑𝜃̇ + 𝐾𝑝 ∫ 𝜃̇𝑑𝑡
𝑡

0

)

−𝐼𝑧𝑧 (𝐾𝑑𝜓̇ + 𝐾𝑝 ∫ 𝜓̇𝑑𝑡
𝑡

0

)
]

From the previously derived relationship between torque and inputs,

Equation 15

𝜏𝐵 = [

𝐿𝑘(𝛾1 − 𝛾3)

𝐿𝑘(𝛾2 − 𝛾4)

𝑏(𝛾1 − 𝛾2 + 𝛾3 − 𝛾4)
] =

[

 −𝐼𝑥𝑥 (𝐾𝑑𝜙̇ + 𝐾𝑝 ∫ 𝜙̇𝑑𝑡

𝑡

0

)

−𝐼𝑦𝑦 (𝐾𝑑𝜃̇ + 𝐾𝑝 ∫ 𝜃̇𝑑𝑡
𝑡

0

)

−𝐼𝑧𝑧 (𝐾𝑑𝜓̇ + 𝐾𝑝 ∫ 𝜓̇𝑑𝑡
𝑡

0

)
]

This gives a set of three equations with four unknowns. Then, is possible to constrain this: enforcing the

constraint that inputs must keep the quadcopter aloft:

Equation 16

𝑇 = 𝑚𝑔

Note that this equation ignores the fact that the thrust will not be pointed directly up. This will limit the

controller applicability, but should not cause major problems for small deviations from stability. If the

gyro sensor is precise enough, it makes possible to integrate the values obtained from the gyro to get

the angles 𝜽 and 𝝓. In this case, the thrust necessary to keep the quadcopter aloft by projecting the

thrust (𝒎𝒈) onto the inertial 𝒛 axis is,

Equation 17

𝑇𝑝𝑟𝑜𝑗 = 𝑚𝑔 𝑐𝑜𝑠 𝜃 cos𝜙

Reinforced Learning for UAV Attitude Control 2019

Page 35 of 69

Therefore, with a precise angle measurement, the thrust would be equal to

Equation 18

𝑇 =
𝑚𝑔

𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙

In which case the component of the thrust pointing along the positive z axis will be equal to (𝒎𝒈). Is

known that the thrust is proportional to a weighted sum of the inputs:

Equation 19

𝑇 =
𝑚𝑔

𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙
= 𝑘∑𝛾𝑖 => ∑𝛾𝑖 =

𝑚𝑔

𝑘 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙

With this extra constraint, now there are a set of four linear equations with four unknowns 𝜸𝒊. Solving

then for each 𝜸𝒊 obtains the following input values:

Equation 20

2.2.2 PID Control

A PID control is a PD control with another term added, which is proportional to the integral of the

process variable. Adding an integral term causes any remaining steady-state error to build up and enact

a change, so a PID controller should be able to track the trajectory (and stabilize the quadcopter) with a

significantly smaller steady-state error. The equations remain identical to the ones presented in the PD

case, but with an additional term in the error:

Equation 21

𝑒𝜙 = 𝐾𝑑𝜙̇ + 𝐾𝑝 ∫ 𝜙̇𝑑𝑡
𝑡

0

+ 𝐾𝑖 ∫ ∫ 𝜙̇𝑑𝑡 𝑑𝑡
𝑡

0

𝑡

0

𝑒𝜃 = 𝐾𝑑𝜃̇ + 𝐾𝑝 ∫ 𝜃̇𝑑𝑡
𝑡

0

+ 𝐾𝑖 ∫ ∫ 𝜃̇𝑑𝑡 𝑑𝑡
𝑡

0

𝑡

0

Reinforced Learning for UAV Attitude Control 2019

Page 36 of 69

𝑒𝜓 = 𝐾𝑑𝜓̇ + 𝐾𝑝 ∫ 𝜓̇𝑑𝑡
𝑡

0

+ 𝐾𝑖 ∫ ∫ 𝜓̇𝑑𝑡 𝑑𝑡
𝑡

0

𝑡

0

2.3 Reinforced Learning

The best definition is given by Barton and Sutton (2015) and reproduced here: “Reinforcement learning

is like many topics with names ending in -ing, such as machine learning, planning, and mountaineering.

Reinforcement learning problems involve learning what to do, how to map situations to actions, so as to

maximize a numerical reward signal. In an essential way they are closed-loop problems because the

learning system's actions in sequence its later inputs. Moreover, the learner is not told which actions to

take, as in many forms of machine learning, but instead must discover which actions yield the most

reward by trying them out. In the most interesting and challenging cases, actions may affect not only the

immediate reward but also the next situation and, through that, all subsequent rewards. These three

characteristics: being closed-loop in an essential way, not having direct instructions as to what actions to

take, and where the consequences of actions, including reward signals, play out over extended time

periods, are the three most important distinguishing features of reinforcement learning problems.”

In a simple way, let’s consider a cute baby learning to walk and trying to reach his target, a coach. The

elements of reinforced learning will be explained in the next item, but the baby body is the

environment, what the baby thinks to do is the policy and how good the baby fells after each action is

the reward.

Figure 2.2: Reinforced Learning - Example

Source: Author

If the baby reaches the goal, he will be happy (high reward) and learns which actions to make that will

lead him to the goal. However, if the baby falls down in between, he will be angry (low reward) and

learns which actions he shouldn’t take.

Reinforced Learning for UAV Attitude Control 2019

Page 37 of 69

2.3.1 Elements of Reinforced Learning

Beyond the agent and the environment, one can identify four main sub elements of a reinforcement

learning system: a policy, a reward signal , a value function, and, optionally, a model of the environment.

 Figure 2.3: Reinforced Learning - Basic schematic

Source: Barton and Sutton (2015)

A policy defines how the agent will behave given a state and/or an old action. Thus, is a kind of map that

maps states to actions. Talking for engineers, the policy is equivalent to the control logic in a control

system. In general, policies may be stochastic, however for specific control tasks, the policy is taken as

deterministic.

A reward signal defines how good or bad the system/environment (quadcopter) was at taking the sent

action from the policy. On each time step, the environment sends to the reinforcement learning agent a

single number as reward. The agent's main objective is to maximize the total reward. In a biological

system, we might think of rewards as analogous to the experiences of pleasure or pain and the reward

sent to the agent at any time depends on the agent's current action and the current state of the agent's

environment.

A value function gives the expected reward in a long run, it means, how good is the given state for the

future reward. Roughly speaking, the value of a state is the total amount of reward an agent can expect

to accumulate over the future, starting from that state.

The final element is named model of the environment. Roughly speaking, this is the system to be

controlled, it means, the quadcopter. Thus, given a state and action, the model might predict the

resultant next state and next reward.

2.4 Reinforcement Learning Algorithms

This section pursues to highlight in a non-exhaustive manner the main type of algorithms used for

reinforcement learning (RL). The goal is to provide an overview of existing RL methods on an intuitive

level by avoiding any deep dive into the models or the math behind it.

Model-free methods are statistically less efficient than model-based methods, because information

from the environment is combined with previous, and possibly erroneous, estimates or beliefs about

state values, rather than being used directly. [58] On the other hand, uses experience to learn directly

Reinforced Learning for UAV Attitude Control 2019

Page 38 of 69

one or both of two simpler quantities (state/ action values or policies), which can achieve the same

optimal behavior but without estimation or use of a world model.

Model-based RL uses experience to construct an internal model of the transitions and immediate

outcomes in the environment. Appropriate actions are then chosen by searching or planning in this

world model.

Figure 2.4: Reinforced Learning taxonomy as defined by openAI

Source: OpenAI (2019)

2.4.1 Model-Free Reinforced Learning

Two main approaches to represent agents with model-free reinforcement learning is Policy optimization

and Q-learning.

2.4.1.1 Policy optimization or policy-iteration methods

In policy optimization methods the agent learns directly the policy function that maps state to action.

The policy is determined without using a value function.

Important to mention that there are two types of policies: deterministic and stochastic. Deterministic

policy maps state to action without uncertainty. It happens when you have a deterministic environment

like a chess table. Stochastic policy outputs a probability distribution over actions in a given state. This

process is called Partially Observable Markov Decision Process (POMDP)

Policy Gradient (PG)

In this method, the policy π has a parameter θ. This π outputs a probability distribution of actions.

Equation 22

𝜋(𝑎|𝑠) = 𝑃[𝑎|𝑠]

Reinforced Learning for UAV Attitude Control 2019

Page 39 of 69

Then is a must to find the best parameters (𝜽) to maximize (optimize) a score function J(𝜽), given the

discount factor 𝜸 and the reward 𝒓.

Equation 23

𝐽(𝜃) = 𝔼𝜋𝜃[∑𝛾𝑟]

Main steps:

 Measure the quality of a policy with the policy score function.

 Use policy gradient ascent to find the best parameter that improves the policy.

Asynchronous Advantage Actor-Critic (A3C)

This method was published by Google’s DeepMind group and covers the following key concept

embedded in it is naming:

 Asynchronous: Several agents are trained in it is own copy of the environment and the model form

these agent’s are gathered in a master agent. The reason behind this idea is that the experience of

each agent is independent of the experience of the others. In this way the overall experience

available for training becomes more diverse.

 Advantage: Similarly to PG where the update rule used the discounted returns from a set of

experiences in order to tell the agent which actions were “good” or “bad”.

 Actor-critic: combines the benefits of both approaches from policy-iteration method as PG and

value-iteration method as Q-learning (See below). The network will estimate both a value function

V(s) (how good a certain state is to be in) and a policy π(s).

Trust Region Policy Optimization (TRPO)

A on-policy algorithm that can be used or environments with either discrete or continuous action

spaces. TRPO updates policies by taking the largest step possible to improve performance, while

satisfying a special constraint on how close the new and old policies are allowed to be.

Proximal Policy Optimization (PPO)

Also, an on-policy algorithm which similarly to TRPO can perform on discrete or continuous action

spaces. PPO shares motivation with TRPO in the task of answering the question: how to increase policy

improvement without the risk of performance collapse? The idea is that PPO improves the stability of

the Actor training by limiting the policy update at each training step.

PPO became popular when OpenAI made a breakthrough in Deep RL when they released an algorithm

trained to play Dota2 and they won against some of the best players in the world.

2.4.1.2 Q-learning or value-iteration methods

Q-learning learns the action-value function Q(s, a): how good to take an action at a particular state.

Basically a scalar value is assigned over an action a given the state s.

Reinforced Learning for UAV Attitude Control 2019

Page 40 of 69

Deep Q Neural Network (DQN)

DQN is Q-learning with Neural Networks. The motivation behind is simply related to big state space

environments where defining a Q-table would be a very complex, challenging and time-consuming task.

Instead of a Q-table Neural Networks approximate Q-values for each action based on the state.

Distributional Reinforcement Learning with Quantile Regression (QR-DQN)

In QR-DQN for each state-action pair instead of estimating a single value a distribution of values in

learned. The distribution of the values, rather than just the average, can improve the policy. This means

that quantiles are learned which threshold values attached to certain probabilities in the cumulative

distribution function.

2.4.1.3 Hybrid

Simply as it sounds, these methods combine the strengths of Q-learning and policy gradients, thus the

policy function that maps state to action and the action-value function that provides a value for each

action is learned. Some hybrid model-free algorithms are:

 Deep Deterministic Policy Gradients (DDPG)

 Soft Actor -Critic (SAC)

 Twin Delayed Deep Deterministic Policy Gradients (TD3)

2.4.2 Model-Base Reinforced Learning

Model-based RL has a strong influence from control theory, and the goal is to plan through an f(s,a)

control function to choose the optimal actions. Think it as the RL field where the laws of physics are

provided by the creator. The drawback of model-based methods is that although they have more

assumptions and approximations on a given task, but may be limited only to these specific types of

tasks. There are two main approaches: learning the model or learn given the model.

2.4.2.1 Learn the Model

To learn the model a base policy is ran, like a random or any educated policy, while the trajectory is

observed. The model is fitted using the sampled data. Below steps describe the procedure:

Supervised learning is used to train a model to minimize the least square error from the sampled data

for the control function. Optimal trajectory using the model and a cost function is used in step three.

The cost function can measure how far we are from the target location and the amount of effort spent.

 World models: one of my favorite approaches in which the agent can learn from it’s own “dreams”

due to the Variable Auto-encoders.

 Imagination-Augmented Agents (I2A): learns to interpret predictions from a learned environment

model to construct implicit plans in arbitrary ways, by using the predictions as additional context in

Reinforced Learning for UAV Attitude Control 2019

Page 41 of 69

deep policy networks. Basically it is a hybrid learning method because it combines model-baes and

model-free methods.

 Model-Based Priors for Model-Free Reinforcement Learning (MBMF): aims to bridge the gap

between model-free and model-based reinforcement learning.

 Model-Based Value Expansion (MBVE): this method controls for uncertainty in the model by only

allowing imagination to fixed depth. By enabling wider use of learned dynamics models within a

model-free reinforcement learning algorithm, we improve value estimation, which, in turn, reduces

the sample complexity of learning.

2.4.2.2 Given the Model

This method is becoming famous in recent time due AlphaGo Zero, that defeated the best go player in

the world. You can found anything you want on Deep Mind’s website.

2.5 Talking about Reward

This section will give an explanation about reward methods. The notation here may have some similar

symbols with the quadcopter dynamics or even control; however they are NOT related to each other.

A reinforced learning algorithm can be used to solve problems modelled as Markov decision processes

(MDPs). An MDP is a tuple < 𝑿,𝑼, 𝒇, 𝝆 >, where 𝑿 denotates the state space, 𝑼 the action space,

𝒇 ∶ 𝑋 × 𝑈 × 𝑋 → [0,∞) the state transition probability density function and 𝝆: 𝑋 × 𝑈 × 𝑋 → ℝ the

reward function.

It is important to note that since state space is continuous, it is only possible to define a probability of

reaching a certain state region, since the probability of reaching a particular state is zero. So, assuming

that a stochastic process to be controlled can be described by the state transition probability density

function 𝒇. The probability of reaching a state 𝒙𝒌+𝟏 in the region 𝑿𝒌+𝟏 ⊆ 𝑿 from state 𝒙𝒌 after applying

action 𝒖𝒌 is

Equation 24

𝑃(𝑥𝑘+1 ∈ 𝑋𝑘+1|𝑥𝑘 , 𝑢𝑘) = ∫ 𝑓(𝑥𝑘, 𝑢𝑘 , 𝑥′)𝑑𝑥′

𝑋𝑘+1

After each transition to a state 𝒙𝒌+𝟏, the controller receives an immediate reward

Equation 25

𝑟𝑘+1 = 𝜌(𝑥𝑘, 𝑢𝑘 , 𝑥𝑘+1)

which depends on the previous state, the current state and the action taken. The action 𝒖𝒌 taken in a

state 𝒙𝒌 is drawn from a stochastic policy 𝝅:𝑋 × 𝑈 → [0,∞).

The goal of the reinforced learning agent is to find the policy 𝝅 which maximizes the expected value of a

certain function 𝒈 of the immediate rewards received, while following the policy 𝝅. This expected value

is cost-to-go function

Reinforced Learning for UAV Attitude Control 2019

Page 42 of 69

Equation 26

𝐽(𝜋) = 𝔼{𝑔(𝑟1, 𝑟2, …)|𝜋}

In most cases, the function 𝒈 is either the discounted sum of rewards received, as explained in the next

items.

2.5.1 Discounted Reward

In the discounted reward setting, the cost function J is equal to the expected value of the discounted

sum of rewards when starting from an initial state 𝒙𝟎 ∈ 𝑿, draw from an initial state distribution

𝒙𝟎~𝒅𝟎(∙), also called the discounted return

Equation 27

𝐽(𝜋) = 𝔼 {∑ 𝛾𝑘𝑟𝑘+1|𝑑0, 𝜋

∞

𝑘=0

} = ∫ 𝑑𝛾
𝜋(𝑥)

𝑋

∫ 𝜋(𝑥, 𝑢)
𝑈

∫ 𝑓(𝑥, 𝑢, 𝑥′)𝜌(𝑥, 𝑢, 𝑥′)𝑑𝑥′𝑑𝑢 𝑑𝑥
𝑋

Where 𝑑𝛾
𝜋(𝑥) = ∑ 𝛾𝑘𝑝(𝑥𝑘 = 𝑥|𝑑0, 𝜋)∞

𝑘=0 is the discounted state distribution under the policy 𝝅 and

𝜸 ∈ [𝟎, 𝟏) denotes the reward discount factor.

During the learning process, the agent will have to estimate the cost-to-go function 𝑱 for a given policy

𝝅. This procedure is called policy evaluation. The resulting estimate of 𝑱 is called the value function and

two definitions exists for it. The state value function

Equation 28

𝑉𝜋(𝑥) = 𝔼 {∑ 𝛾𝑘𝑟𝑘+1| 𝑥0 = 𝑥, 𝜋

∞

𝑘=0

}

Only depends on the state 𝒙 and assumes that the policy 𝝅 is followed starting from this state. The

state-action value function

Equation 29

𝑄𝜋(𝑥, 𝑢) = 𝔼 {∑ 𝛾𝑘𝑟𝑘+1|𝑥0 = 𝑥, 𝑢0 = 𝑢, 𝜋

∞

𝑘=0

}

Also depends on the state 𝒙, but makes action 𝒖 chosen in this state a free variable instead of having it

generated by the policy 𝝅. Once the first transition onto a next state has been made, 𝝅 governs the rest

of the action selection. The relationship between two definitions for the value function is given by

Equation 30

𝑉𝜋(𝑥) = 𝔼{𝑄𝜋(𝑥, 𝑢)| 𝑢 ~ 𝜋(𝑥,∙)}

Reinforced Learning for UAV Attitude Control 2019

Page 43 of 69

With some manipulation, Equation 28 and Equation 29 can be put into a recursive form. For the state

value function this is

Equation 31

𝑉𝜋(𝑥) = 𝔼{𝜌(𝑥, 𝑢, 𝑥′) + 𝛾𝑉𝜋(𝑥′)}

With 𝒖 drawn from the probability distribution function 𝝅(𝒙, ∙) and 𝒙′ drawn from 𝒇(𝒙, 𝒖, ∙). For the

state-action value function the recursive form is

Equation 32

𝑄𝜋(𝑥, 𝑢) = 𝔼{𝜌(𝑥, 𝑢, 𝑥′) + 𝛾𝑄𝜋(𝑥′, 𝑢′)}

with 𝒙′ drawn from the probability distribution function 𝒇(𝒙, 𝒖, ∙) and 𝒖′ drawn from the distribution

𝝅(𝒙′, ∙). These recursive relationships are called Bellman equations.

2.5.2 Average Reward

As an alternative to the discounted reward setting, is the approach of using the average return. In this

setting a starting state 𝒙𝟎 does not need to be chosen, under the assumption that the process is ergotic

and, thus 𝑱 does not depend on the starting state. Instead, the value functions for a policy 𝝅 are defined

relative to the average expected reward per time step under the policy, turning the cost-to-go function

into

Equation 33

𝐽(𝜋) = lim
𝑛→∞

(
1

𝑛
)𝔼 {∑ 𝑟𝑘+1|𝜋

𝑛−1

𝑘=0

} =∫ 𝑑𝜋(𝑥)
𝑋

∫ 𝜋(𝑥, 𝑢)
𝑈

∫ 𝑓(𝑥, 𝑢, 𝑥′)𝜌(𝑥, 𝑢, 𝑥′)𝑑𝑥′𝑑𝑢 𝑑𝑥
𝑋

Equation 33 is very similar to Equation 27, except that the definition for the state distribution changed

to 𝑑𝜋(𝑥) = lim𝑘→∞ 𝑝(𝑥𝑘 = 𝑥, 𝜋). For a given policy 𝝅, the state value function 𝑽𝝅(𝒙) and state-action

value 𝑸𝝅(𝒙, 𝒖) are then defined as

Equation 34

𝑉𝜋(𝑥) = 𝔼 {∑(𝑟𝑘+1 − 𝐽(𝜋))|𝑥0 = 𝑥, 𝜋

∞

𝑘=0

}

𝑄𝜋(𝑥, 𝑢) = 𝔼 {∑(𝑟𝑘+1 − 𝐽(𝜋))|𝑥0 = 𝑥, 𝑢0 = 𝑢, 𝜋

∞

𝑘=0

}

The Bellman equations for the average reward – in this case also called the Poisson equations – are

Equation 35

𝑉𝜋(𝑥) + 𝐽(𝜋) = 𝔼{𝜌(𝑥, 𝑢, 𝑥′) + 𝑉𝜋(𝑥′)}

Reinforced Learning for UAV Attitude Control 2019

Page 44 of 69

With 𝒖 and 𝒙′ drawn from the appropriate distributions as before and

Equation 36

𝑄𝜋(𝑥, 𝑢) + 𝐽(𝜋) = 𝔼{ 𝜌(𝑥, 𝑢, 𝑥′) + 𝑄𝜋(𝑥′, 𝑢′)}

Again with 𝒙′ and 𝒖′ drawn from the appropriate distributions.

2.6 Talking about Stochastic Policy Gradient Theorems

Many actor-critic algorithms, now, rely on the policy gradient theorem, proving that an unbiased

estimate of the gradient (Equation 46) can be obtained from experience using an approximate value

function that satisfies certain properties. Roughly speaking, the basic idea is that since the number of

parameters that the actor has to update is relatively small compared to the (usually infinite) number of

states, it is not useful to have the critic attempting to compute the exact value function, which is also a

high-dimensional object. Instead, it should compute a projection of the value function onto a low-

dimensional subspace.

In the case of an approximated stochastic policy, but exact state-action value function 𝑸𝝅, the policy

gradient theorem is as follows.

2.6.1 Theorem 1 (Policy Gradient)

For any MDP, in either the average reward or discounted reward setting, the policy gradient is given by

Equation 37

∇𝜗𝐽 = ∫ 𝑑𝜋(𝑥)∫ ∇𝜗𝜋(𝑥, 𝑢)𝑄𝜋(𝑥, 𝑢)𝑑𝑢𝑑𝑥
𝑈𝑋

With 𝒅𝝅(𝒙) defined for the appropriated reward setting.

This clearly shows the relationship between the policy gradient 𝛁𝝑𝑱 and the critic function 𝑸𝝅(𝒙, 𝒖) and

ties together the update equations of the actor and critic in the Erro! Fonte de referência não

encontrada..

For most applications, the state-action space is continuous and thus infinite, which means that it is

necessary to approximate the state or state-action value function. The result shows that 𝑸𝝅(𝒙, 𝒖) can

be approximated with 𝒉𝒘 ∶ 𝑋 × 𝑈 → ℝ, parametrized by 𝒘, without affecting the unbiasedness of the

policy gradient estimate.

In order to find the closest approximation of 𝑸𝝅 by 𝒉𝒘, let’s try to find the 𝒘 that minimizes the

quadratic error

Equation 38

𝜀𝑤
𝜋 (𝑥, 𝑢) =

1

2
[𝑄𝜋(𝑥, 𝑢) − ℎ𝑤(𝑥, 𝑢)]2

Reinforced Learning for UAV Attitude Control 2019

Page 45 of 69

The gradient of this quadratic error with respect to 𝒘 is

Equation 39

∇𝑤𝜀𝑤
𝜋(𝑥, 𝑢) = [𝑄𝜋(𝑥, 𝑢) − ℎ𝑤(𝑥, 𝑢)] ∇wℎ𝑤(𝑥, 𝑢)

and this can be used in a gradient descent algorithm to find the optimal 𝒘. If the estimator of 𝑸𝝅(𝒙, 𝒖)

is unbiased, the expected value of the above equation is zero for the optimal 𝒘, it means:

Equation 40

∫ 𝑑𝜋(𝑥)
𝑋

∫ 𝜋(𝑥, 𝑢)∇𝑤𝜀𝑤
𝜋(𝑥, 𝑢)𝑑𝑢𝑑𝑥 = 0

𝑈

The policy gradient theorem with function approximation is based on the last equality (Equation 40).

2.6.2 Theorem 2 (Policy Gradient with Function Approximation)

More details about function approximator, for this case a MLP neural network, will be given later in a

specific item, those concepts are not necessary to understand the following equations. So, if 𝒉𝒘 satisfies

Equation 40 and:

Equation 41

∇𝑤ℎ𝑤(𝑥, 𝑢) = ∇𝜗 ln 𝜋𝜗(𝑥, 𝑢)

where 𝝅𝝑(𝒙, 𝒖) denotes the stochastic policy, parametrized by 𝝑, then

Equation 42

∇𝜗𝐽 = ∫ 𝑑𝜋(𝑥)
𝑋

∫ ∇𝜗 𝜋(𝑥, 𝑢)ℎ𝑤(𝑥, 𝑢)𝑑𝑢𝑑𝑥
𝑈

An extra assumption is that 𝒉 actually needs to be an approximator that is linear with respect to some

parameter 𝒘 and features 𝝍, i.e. 𝒉𝒘 = 𝑤𝑇𝜓(𝑥, 𝑢), transforming Equation 41 into

Equation 43

𝜓(𝑥, 𝑢) = ∇𝜗 ln 𝜋𝜗(𝑥, 𝑢)

Features 𝝍 that satisfy this last equation as known as compatible features.

2.7 Talking about Deterministic Policy Gradients

We now consider how the policy gradient framework may be extended to deterministic policies.

According to [65], the main result from this item will be a deterministic policy gradient theorem,

analogous to the stochastic policy gradient theorem presented in the previous section.

It was previously believed that the deterministic policy gradient did not exist, or could only be obtained

when using a model. However, [65] shows that the deterministic policy gradient does indeed exist, and

Reinforced Learning for UAV Attitude Control 2019

Page 46 of 69

furthermore it has a simple model-free form that simply follows the gradient of the action-value

function. In addition, it also shows that deterministic policy gradient is the limiting case, as policy

variance tends to zero, of the stochastic policy gradient.

The majority of model-free reinforced learning algorithms are based on generalized policy iteration:

interleaving policy evaluation with policy improvement. Policy evaluation methods estimate the action-

value function 𝑸𝝅(𝒔, 𝒂) or 𝑸𝒘(𝒔, 𝒂) = 𝒉𝒘(𝒔, 𝒂), for example by Monte-Carlo evaluation or temporal-

difference learning (TD). Policy improvement methods update the policy with respect to the (estimated)

action-value function.

A simple and computationally attractive method is to move the policy in the direction of the gradient of

𝑸. Specifically, for each visited state 𝑠, the policy parameter 𝝑𝒌+𝟏 are updated in proportion to the

gradient 𝛁𝝑𝑸𝒘𝒌
(𝒔, 𝝅𝝑(𝒔)).

Equation 44

∇𝜗𝐽(𝜋𝜗) = 𝔼{∇𝜗𝜋𝜗(𝑠) ∇𝑎𝑄𝑤(𝑠, 𝑎)| 𝑎 = 𝜋𝜗(𝑠)}

2.8 Actor-Critic Reinforced Learning

This section will give an explanation on all three groups, starting with critic-only methods. The notation

here may have some similar symbols with the quadcopter dynamics or even control, however they are

NOT related to each other. The part on actor-only methods introduces the concept of a policy gradient,

which provides the basis for actor-critic algorithms. The final part of this section explains the policy

gradient theorem, an important result that is now widely used in many implementations of actor-critic

algorithms.

In real-life applications, such as robotics, processes usually have continuous state and action spaces,

making it impossible to store exact value functions or policies for each separate state or state-action

pair. Any RL algorithm used in practice will have to make use of function approximators for the value

function and/or the policy in order to cover the full range of states and actions. Therefore, this section

assumes the use of such function approximators.

2.8.1 Critic-Only Methods

Critic-only methods, such as Q-learning and SARSA, use a state-action value function and no explicit

function for the policy. For continuous state and action spaces, this will be an approximate state-action

value function. These methods learn the optimal value function by finding online an approximate

solution to the Bellman equation. A deterministic policy, denoted by 𝝅:𝑿 → 𝑼 is calculated by using an

optimization procedure over the value function

Equation 45

𝜋(𝑥) = 𝑎𝑟𝑔 max
𝑢

𝑄(𝑥, 𝑢)

Reinforced Learning for UAV Attitude Control 2019

Page 47 of 69

There is no reliable guarantee on the near-optimality of the resulting policy for just any approximated

value function when learning in an online setting. For example, Q-learning and SARSA with specific

function approximators have been shown not to converge even for simple MDPs. However, was shown

that convergence can be assured for linear-in-parameters function approximators if trajectories are

sampled according to their on-policy distribution. Nevertheless, for most choices of basis functions an

approximated value function learned by temporal difference learning will be biased. This is reflected by

the state-of-the-art bounds on the least-squares temporal difference (LSTD) solution quality, which

always include a term depending on the distance between the true value function and its projection on

the approximation space. For a particularly bad choice of basis functions, this bias can grow very large.

2.8.2 Actor-only Methods and the Policy Gradient

Policy gradient methods (see, for instance, the SRV [59] and Williams’ REINFORCE algorithms [60]) are

principally actor-only and do not use any form of stored value function. Instead, the majority of actor-

only algorithms work with a parametrized family of policies and optimize the cost defined directly over

the parameter scape of the policy. A major advantage of actor-only methods over critic-only methods is

that they allow the policy to generate actions in the complete continuous action space.

A policy gradient method is generally obtained by parametrizing the policy 𝝅 by the parameter vector

𝝑 ∈ ℝ𝒑. Considering that both Equation 27 and Equation 33 are functions of the parametrized policy 𝝅𝝑,

they are in fact functions of 𝝑, the gradient of the cost function with respect to 𝝑 is described by

Equation 46

∇𝜗𝐽 =
𝜕𝐽

𝜕𝜋𝜗

𝜕𝜋𝜗

𝜕𝜗

Then, by using standard optimization techniques, a locally optimal solution of the cost 𝑱 can be found.

The gradient 𝛁𝝑𝑱 is estimated per time step and the parameters are then updated in the direction of this

gradient. For example, a simple gradient ascent method would yield the policy gradient update equation

Equation 47

𝜗𝑘+1 = 𝜗𝑘 + 𝛼𝑎,𝑘∇𝜗𝐽𝑘

where 𝜶𝒂,𝒌 > 𝟎 is a small enough learning rate for the actor by which it is obtained that 𝑱(𝝑𝒌+𝟏) ≥

𝑱(𝝑𝒌).

The main advantage of the actor-only approach is their strong convergence property, which naturally

inherited from gradient descent methods. Convergence is obtained if the estimated gradients are

unbiased and the learning rates 𝜶𝒂,𝒌 satisfy,

Equation 48

∑ 𝛼𝑎,𝑘 = ∞

∞

𝑘=0

 ∑ 𝛼𝑎,𝑘
2 < ∞

∞

𝑘=0

Reinforced Learning for UAV Attitude Control 2019

Page 48 of 69

A drawback of the actor-only approach is that the estimated gradient may have a large variance. Also,

every gradient is calculated without using any knowledge of the past estimates.

2.8.3 Actor-Critic Algorithms – Stochastic

Actor-critic methods aim to combine the advantages of actor-only and critic-only methods. Like actor-

only methods, actor-critic methods are capable of producing continuous actions, while the large

variance in the policy gradients of actor-only methods is countered by adding a critic. The role of the

critic is to evaluate the current policy prescribed by the actor. In principle, this evaluation can be done

by any policy evaluation method commonly used, such as TD(λ), LSTD, or residual gradients. The critic

approximates and updates the value function using samples. The value function is then used to update

the actor’s policy parameters in the direction of performance improvement. These methods usually

preserve the desirable convergence properties of policy gradient methods, in contrast to critic-only

methods. In actor-critic methods, the policy is not directly inferred from the value function by using

𝝅(𝒙) = 𝑎𝑟𝑔 max𝑢 𝑄(𝑥, 𝑢). Instead, the policy is updated in the policy gradient direction using only a

small step size 𝜶𝒂, meaning that a change in the value function will only result in a small change in the

policy, leading to less or no oscillatory behavior in the policy as described in [61].

Figure 2.5: Schematic overview of an actor-critic algorithm.

Source: Grondman, Ivo et Al. (2012)

Figure 2.5 shows the schematic structure of an actor-critic algorithm. The learning agent has been split

into two separate entities: the actor (policy) and the critic (value function). The actor is only responsible

for generating a control input 𝒖, given the current state 𝒙. The critic is responsible for processing the

rewards it receives, i.e. evaluating the quality of the current policy by adapting the value function

estimate. After a number of policy evaluation steps by the critic, the actor is updated by using

information from the critic.

A unified notion for the actor-critic algorithms described here will be adopted. Remembering: The

notation here may have some similar symbols with the quadcopter dynamics or even control, however

they are NOT related to each other. Therefore, two actor-critic algorithm templates are introduced: one

for the discounted reward setting and one for the average reward setting. Once these templates are

established, specific actor-critic algorithms can be discussed by only looking at how they fit into the

general template or in what way they differ from it.

Reinforced Learning for UAV Attitude Control 2019

Page 49 of 69

For both rewards settings, the value function is parametrized by the parameter vector 𝜃 ∈ ℝ𝑞 . This will

be denoted with 𝑽𝜽(𝒙) or 𝑸𝜽(𝒙, 𝒖). If the parameterization is linear, the features (basis functions) will

be denoted with 𝝓, i.e.

Equation 49

𝑉𝜃(𝑥) = 𝜃𝑇𝜙(𝑥) or 𝑄𝜃(𝑥, 𝑢) = 𝜃𝑇𝜙(𝑥, 𝑢)

The stochastic policy 𝝅 is parameterized by 𝝑 ∈ ℝ𝒑 and will be denoted with 𝝅𝝑(𝒙, 𝒖). If the policy is

denoted with 𝝅𝝑(𝒙), it is deterministic and no longer represents a probability density function, but the

direct mapping from states to actions 𝒖 = 𝝅𝝑(𝒙).

The goal in actor-critic algorithms – or any other RL algorithm for that matter – is to find the best policy

possible, given some stationary MDP (Markov Decision Process). A prerequisite for this is that the critic

is able to accurately evaluate a given policy. The difference between the right-hand and left-hand side of

the Bellman equation, whether it is the one for the discounted reward setting or the average reward

setting, is called Temporal Difference (TD) error and is used to update the critic. Using the function

approximation for the critic and a transition sample (𝒙𝒌, 𝒖𝒌, 𝒓𝒌+𝟏, 𝒙𝒌+𝟏), the TD error is estimated as

Equation 50

𝛿𝑘 = 𝑟𝑘+1 + 𝛾𝑉𝜃𝑘
(𝑥𝐾+1) − 𝑉𝜃𝑘

(𝑥𝑘)

Perhaps the most standard way of updating the critic, is to exploit this TD error for use in a gradient

descent update:

Equation 51

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑐,𝑘𝛿𝑘∇𝜃𝑉𝜃𝑘
(𝑥𝑘)

where 𝜶𝒄,𝒌 > 𝟎 is the learning rate of the critic. For the linearly parameterized function approximator,

this reduces to:

Equation 52

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑐,𝑘𝛿𝑘𝜙(𝑥𝑘)

This temporal difference method is also known as 𝑻𝑫(𝟎) learning, as no eligibility traces are used. The

extension to the use of eligibility traces, resulting in 𝑻𝑫(𝝀) methods, is straightforward and is explained

next.

Using the critic updated formula 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑐,𝑘𝛿𝑘∇𝜃𝑉𝜃𝑘
(𝑥𝑘) , as already shown above, to update the

critic results in a one-step backup, whereas the reward received is often the result of a series of steps.

Reinforced Learning for UAV Attitude Control 2019

Page 50 of 69

2.8.4 Actor-Critic Algorithms – Deterministic

We consider a standard reinforced learning setup consisting of an agent interacting with an

environment in discrete timesteps. At each timestep 𝒅𝒕 the agent receives an observation 𝒙𝒌, takes an

action 𝒖𝒌 and receives a scalar reward 𝒓𝒌. In all the environments considered here the actions are real-

valued 𝒖𝒌 ∈ ℝ𝑛. In general, the environment may be partially observed so that the entire history of the

observation, action pair 𝒔𝒌 = (𝑥1, 𝑢1, … , 𝑢𝑘−1, 𝑥𝑘) may be required to describe the state. Here, we

assumed the environment is fully-observed so 𝒔𝒌 = 𝒙𝒌.

The DDPG algorithm maintains a parametrized actor function 𝝅(𝒔|𝜽𝝅) which specifies the current policy

by deterministically mapping states to a specific action. The critic 𝑸(𝒙, 𝒖) is learned using the Bellman

equation. The actor is updated by following and applying the chain rule to the expected return from the

start distribution 𝑱 with respect to the actor parameters:

Equation 53

∇𝜃𝜋 𝐽 ≈ 𝔼{∇𝜃𝜋𝑄(𝑥, 𝑢|𝜃𝑄)| 𝑥 = 𝑥𝑘 , 𝑢 = 𝜋(𝑥𝑘|𝜃
𝜋)}

= 𝔼{∇𝑢𝑄(𝑥, 𝑢|𝜃𝑄)| 𝑥 = 𝑥𝑘, 𝑢 = 𝜋(𝑥𝑘) × ∇𝜃𝜋
𝜋(𝑥|𝜃𝜋)|𝑥 = 𝑥𝑘}

[65] proved that this is the gradient of the policy’s performance.

One challenge when using neural networks for reinforcement learning is that most optimization

algorithms assume that the samples are independently and identically distributed. Obviously, when the

samples are generated from exploring sequentially in an environment this assumption no longer holds.

Additionally, to make efficient use of hardware optimizations, it is essential to learn in mini-batches,

rather than online.

2.9 Neural Network – Function Approximator

This chapter will introduce you to fully connected deep networks, known as Multi-Layer Perceptron

(MLP). MLPs are used for thousands of applications and thus are the workhorses of deep learning. The

major advantage of fully connected networks is that they are “structure agnostic.” That is, no special

assumptions need to be made about the input (for example, that the input consists of images or videos).

We will make use of this generality to use fully connected deep networks to address the problem of

quadcopter control.

While being structure agnostic makes fully connected networks very broadly applicable, such networks

do tend to have weaker performance than special-purpose networks tuned to the structure of a

problem space. However, for this work, it will be more than sufficient.

2.9.1 What is a Fully Connected Deep Network?

Exactly as described by O’Reilly (2019), fully connected neural network consists of a series of fully

connected layers. A fully connected layer is a function from ℝ𝑚 to ℝ𝑛 . Each output dimension depends

on each input dimension.

Reinforced Learning for UAV Attitude Control 2019

Page 51 of 69

Figure 2.6: A fully connected layer in a deep network

Source: O’Reilly (2019)

Let 𝒙 ∈ ℝ𝑚 represents the input to a fully connected layer. Let 𝒚𝒊 ∈ ℝ be the i –th output from the fully

connected layer. Then 𝒚𝒊 ∈ ℝ can be computed as follows:

Equation 54

𝑦𝑖 = 𝜎(𝑤1𝑥1 + ⋯+ 𝑤𝑚𝑥𝑚)

Here, 𝝈 is the activation function of that neuron, and the 𝒘𝒊 are learnable parameters in the network.

The full output 𝒚 is then:

Equation 55

𝑦 = 𝜎(𝑤1,1𝑥1 + ⋯+ 𝑤1,𝑚𝑥𝑚) ⋮ 𝜎(𝑤𝑛,1𝑥1 + ⋯+ 𝑤𝑛,𝑚𝑥𝑚)

Note that is directly possible to stack fully connected networks. A network with multiple fully connected

networks is often called a “deep” network as shown bellow:

Reinforced Learning for UAV Attitude Control 2019

Page 52 of 69

Figure 2.7: A multilayer deep fully connected network

Source: O’Reilly (2019)

As a quick implementation note, note that the equation for a single neuron looks very similar to a dot-

product of two vectors (recall the discussion of tensor basics). For a layer of neurons, it is often

convenient for efficiency purposes to compute 𝒚 as a matrix multiply:

Equation 56

𝑦 = 𝜎(𝑤 𝑥)

where sigma is a matrix in ℝ𝑛×𝑚 and the nonlinearity 𝝈 is applied componentwise.

2.9.2 Dropout Regularization

Dropout is a form of regularization that randomly drops some proportion of the nodes that feed into a

fully connected layer. Here, dropping a node means that its contribution to the corresponding activation

function is set to 0. Since there is no activation contribution, the gradients for dropped nodes drop to

zero as well.

Reinforced Learning for UAV Attitude Control 2019

Page 53 of 69

Figure 2.8: Dropout randomly drops neurons from a network while training. Empirically, this technique often
provides powerful regularization for network training.

Source: O’Reilly (2019)

The nodes to be dropped are chosen at random during each step of gradient descent. The underlying

design principle is that the network will be forced to avoid “co-adaptation”. Dropout prevents this type

of co-adaptation because it will no longer be possible to depend on the presence of single powerful

neurons (since that neuron might drop randomly during training). As a result, other neurons will be

forced to “pick up the slack” and learn useful representations as well. The theoretical argument follows

that this process should result in stronger learned models [64].

Reinforced Learning for UAV Attitude Control 2019

Page 54 of 69

3. Methodology
Now we have all the necessary background to make this work done, however, how everything works

together? First of all, let’s remember the general structure and after that, we will go deeper in each

step.

So, as explained in the introduction, we are using DDPG Actor-Critic Reinforced Learning. The RL control

system will be dynamic changing the PID constants while trying to stabilize the quadcopter. The actor

and critic will be 2 different fully connected neural networks with the same input vector. The actor and

critic will be 2 different fully dense connected neural networks with 2 hidden layers. Results will be

compared over simple PID control tuned using parameter grid search method to selecting the gains.

3.1 Quadcopter Simulation – RL Environment

The mathematical model of the quadcopter is implemented for simulation in Python 3.X. The

parameters used are from the DJI Phantom 2 quadcopter [62].

Table 1: DJI Phantom 2 - Parameters

Variable Value Units
𝐾𝑉 920 [rpm/V]

𝐾𝐸 9.5493/𝐾𝑉 [V.s/rad]

𝑇𝑓 0.04 [N.m]

𝐷𝑓 0.0002 [N.m.s/rad]

𝑟 0.12 [m]

𝐽𝑚 = 𝐼𝑚 0.0000049 [Kg.m²]

𝜔max 1047.197 [rad/s]

𝑛𝐵 2 ----

𝑚𝐵 0.0055 [Kg]

𝑟𝐵 0.12 [m]

𝜖 0.004 [m]

𝐶𝑇 0.0048 ----

𝐶𝑄 0.00023515 ----

𝑟𝑟𝑜𝑡 0.014 [m]

𝜌 1.225 [Kg/m³]

𝑚 1.3 [Kg]

𝑙 0.0175 [m]

𝐼𝑥 0.081 [Kg.m²]

𝐼𝑦 0.081 [Kg.m²]

𝐼𝑧 0.142 [Kg.m²]

𝑚𝑟𝑜𝑡 0.025 [Kg]

For calculating the parameters 𝒌 and 𝒃 from the Quadcopter Mathematical Modelling item, the

following equations will be needed:

Reinforced Learning for UAV Attitude Control 2019

Page 55 of 69

Equation 57

𝑘 = 𝐶𝑇𝜌𝐴 𝑟2

𝑏 = 𝐶𝑄𝜌𝐴𝑟3

where 𝒓 and 𝑨 = 𝝅𝒓𝟐 are the radius and disk area of the propeller, respectively. So, 𝒌 = 3.83 × 10−6

and 𝒃 = 2.25 × 10−8

The selected step-size is 𝒅𝒕 = 0.005 [s], each episode has 30 seconds and there are a total of 1000

episodes with random angular velocities and angular position initialization.

3.2 RL Reward method

The step-size 𝒅𝒕 executes a single simulation step with the specified actions and returns to the agent the

new state vector, together with a reward indicating how well the given action was performed. Reward

engineering can be challenging. If careful design is not performed, the derived policy may not reflect

what was originally intended. For this work, with the goal of establishing a baseline of accuracy, will be

used a reward to reflect the total quadcopter position error.

Translating the current error 𝒆𝒕 at time 𝒕 into a derived reward 𝒓𝒌+𝟏 as follows [63],

Equation 58: Reward

𝑟𝑘+1 = −𝑐𝑙𝑖𝑝(4 × 10−3‖𝑝𝑘‖ + 2 × 10−4‖𝑎𝑘‖ + 3 × 10−4‖𝜔𝑘‖ + 5 × 10−4‖𝑜𝑘‖)

where 𝒑𝒌, 𝒂𝒌, 𝝎𝒌 and 𝒐𝒌 are error in position, linear acceleration, angular velocities and angular

position (Euler angles) respectively. The clip function clips the result between the [0,1] in cases where

there is an overflow in the error.

Since the reward is negative, it signifies a penalty, the agent maximizes the reward (and thus minimizing

error) overtime in order to track the target as accurately as possible. Rewards are normalized between

to provide standardization and stabilization during training.

3.3 Actor and Critic – Structure and Training

Let’s first talk about how to build the Actor Network. Here was used 2 ‘ReLU’ hidden layers with 50

hidden units each. The output consist of 3 continuous actions with ‘Linear’ activation representing each

controller constant [𝑲𝒑, 𝑲𝒊, 𝑲𝒅]. The structure is not optimized in any sense. Different number of nodes

and activation functions were tried, however hyper parameters were not deeply studied and changed.

In the final layer was used the normal initialization with 𝜇 = 0, 𝜎 = 1 × 10−4 to ensure the initial

outputs for the policy were near zero.

Reinforced Learning for UAV Attitude Control 2019

Page 56 of 69

Figure 3.1: Actor Neural Network architecture

Source: Author

The construction of the Critic Network is very similar to the actor. The only difference is that the critic

network takes both the states and the action as inputs. According to the DDPG paper [65], the actions

were not included until the 2nd hidden layer of Q-network. Here, the Keras function Merge was used to

merge the action and the hidden layer together

Figure 3.2: Critic Neural Network architecture

Source: Author

As in DDQN algorithm, a replay buffer to learn in mini-batches was also used. The replay buffer is a finite

sized cache 𝑅. Transitions were sampled from the environment according to the exploration policy and

the tuple (𝑥𝑘 , 𝑢𝑘, 𝑟𝑘 , 𝑥𝑘+1) was stored in the replay buffer. Then the replay buffer was full the oldest

samples were discarded. At each time step the actor and critic are updated by sampling a minibatch

Reinforced Learning for UAV Attitude Control 2019

Page 57 of 69

uniformly from the buffer. Because DDDPG is an off-policy algorithm, the replay buffer can be large,

allowing the algorithm to benefit from learning across a set of uncorrelated transition.

Directly implementing Q-learning with neural networks was proven to be unstable in many

environments. Since the network 𝑄(𝑥, 𝑢|𝜃𝑄) being updated is also used in calculating the target value,

the Q update is prone to divergence. The solution is a modified neural network for actor-critic and to

use “soft” target updates, rather than directly copying the weights. A copy of the actor and critic

networks was made, 𝑄′(𝑥, 𝑢|𝜃𝑄′
) and 𝜋′(𝑥, 𝜃𝜋′

) respectively, that are used for calculating the target

values. The weights of these target networks are then updated by having them slowly track the learned

networks: 𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′ with 𝜏 ≪ 1. This means that the target values are constrained to change

slowly, greatly improving the stability of learning. This simple change moves the relatively unstable

problem of learning the action-value function closer to the case of supervisioned learning, a problem for

which robust solutions exist. This may slow learning, since the target network delays the propagation of

value estimations.

About normalizations, they were not applied. However, when learning from low dimensional feature

vector observations, the different components of the observation may have different physical units (for

example, positions versus velocities) and the ranges may vary across environments. This can make it

difficult for the network to learn effectively and may make it difficult to find hyper-parameters which

generalize across environments with different scales of state values.

A major challenge of learning in continuous action spaces is exploration. An advantage of off policies

algorithms such as DDPG is that the problem of exploration can be treated independently from the

learning algorithm. There are two techniques that could be used here: parameter noise or action noise.

However, is shown by [64] that add parameter noise to a neural network based actor/policy will bring

better results. So, this noise will be added through dropout normalization, in which random neurons are

deactivated. For each layer, the following dropout percentages were chosen. Remembering that other

parameter values were not tried.

Table 2: Dropout table

Hidden Layer Dropout
Hidden 1 5%

Hidden 2 5%

For the targets, a copy of the actor and critic networks was created and then used for calculating the

target values. The weights of these target networks are then updated by having them slowly track the

learned networks as shown below.

Finally, to summarize the method applied:

Reinforced Learning for UAV Attitude Control 2019

Page 58 of 69

Reinforced Learning for UAV Attitude Control 2019

Page 59 of 69

4. Results

4.1 PID Controlled Response

After using a parameter grid search, the following controller constants were found to give a good

response for a random step input:

[𝐾𝑝, 𝐾𝑖 , 𝐾𝑑] = [2, 0.0005, 20]

Remember that only the angular velocities are controlled. The 𝑥, 𝑦 and 𝑧 position are not controlled.

Figure 4.1: PID controller response – 3D Coordinates

Reinforced Learning for UAV Attitude Control 2019

Page 60 of 69

Figure 4.2: PID controller response – 3D path

Figure 4.3: PID controller response – Angular Velocities

Reinforced Learning for UAV Attitude Control 2019

Page 61 of 69

4.2 Reinforced Learning Response – (RL + PD controller)

Remember that only the angular velocities are controlled. The 𝑥, 𝑦 and 𝑧 position are not controlled.

Figure 4.4: Reinforced Learning controller response – 3D Coordinates

Reinforced Learning for UAV Attitude Control 2019

Page 62 of 69

Figure 4.5: Reinforced Learing controller response – 3D path

Figure 4.6: Reinforced Learning controller response – Angular Velocities

Reinforced Learning for UAV Attitude Control 2019

Page 63 of 69

5. Conclusions
Thus, this work has shown us that is possible to control a quadcopter using Reinforced Learning

techniques. However, the model only converged for small angles, what makes impossible to compare

the original PID result with the Reinforced Learning results. However, we cannot say that PID is better

than RL or the opposite is true because the RL stability and response to non-linear conditions, payload

change as well as external perturbations were not tested.

In addition to, although deterministic gradient is simple and effective, it requires careful tuning of the

model hyper-parameters, specifically the learning rate used in optimization, as well as the initial values

for the model parameters and layer activation function type. The training is complicated by the fact that

the inputs to each layer are affected by the parameters of all preceding layers – so that small changes to

the network parameters amplify as the network becomes deeper.

For future works, is recommended to try parameter grid search optimization for the Reinforced Learning

control as well as mini-batch normalization. The normalization can be helpful in several ways, according

to [66]: First, the gradient of the loss over a mini-batch is an estimate of the gradient over the training

set, whose quality improves as the batch size increases. Second, computation over a batch can be much

more efficient than m computations for individual examples, due to the parallelism afforded by the

modern computing platforms.

Reinforced Learning for UAV Attitude Control 2019

Page 64 of 69

6. References

1. WHAT is a Drone? Drone vs Quadcopter. Drone and Quadcopter, 2019. Disponivel em:

<https://droneandquadcopter.com/what-is-a-drone/>. Acesso em: 15 ago. 2019.

2. UBIRATAN, E. A origem dos vant. Aeromagazine, 2015. Disponivel em:

<https://aeromagazine.uol.com.br/artigo/origem-dos-vant_1907.html>. Acesso em: 15 ago. 2019.

3. DOHERTY, P.; RUDOL, P. A UAV Search and Rescue Scenario with Human Body Detection and

Geolocalization. AI 2007: Advances in Artificial Intelligence , p. 1-13, 2007.

4. DE OLIVEIRA ANDRADE, R. O Voo do Falcão. Pesquisa Fapesp, n. 211, set. 2013.

5. SCUSSEL, A. Pesquisa revela dados sobre o mercado de VANTs no Brasil. MundoGEO, abr. 2013.

6. MARTINEZ, K. The History Of Drones (Drone History Timeline From 1849 To 2019). Drone Ethusiast,

2018. Acesso em: 15 ago. 2019.

7. TENET, GEORGE; EX-DIRECTOR OF CIA. Non armed surveillance missions had been taking place over

Afghanistan since 2000. [S.l.].

8. SINGER, P. W. Wired for War: The Robotics Revolution and Conflict in the 21st Century. Penguin,

New York, p. 34, 2009.

9. WOODS, C. OK, fine. Shoot him.’ Four words that heralded a decade of secret US drone killings. The

Bureau of Investigative Journalism, p. 47-48, nov. 2012.

10. BOWDEN, M. How the Predator Drone Changed the Character of War. Smithsonian Magazine , nov.

2013.

11. GOLDMAN SACHS RESEARCH. Drones. Goldman Sachs. [S.l.].

12. Estudo Sobre a Indústria Brasileira e Europeia de Veículos Aéreos Não Tripulados. Ministério da

Indústria, Comércio Exterior e Serviços - Brasil. [S.l.].

13. DIVYA, J. Exploring the latest drone technology for commercial, industrial and military drone uses.

Business Insider, p. 13, jul. 2017.

14. CONVERTAWINGS Model A - 1956. Aviastar. Disponivel em:

<http://www.aviastar.org/helicopters_eng/convertawings.php>. Acesso em: 10 set. 2019.

Reinforced Learning for UAV Attitude Control 2019

Page 65 of 69

15. DARACK, E. A Brief History of Quadrotors. Airspacemag, maio 2017.

16. HISTORY of Quadcopters and other Multirotors. KrossBlade Aeroespace. Disponivel em:

<https://www.krossblade.com/history-of-quadcopters-and-multirotors>. Acesso em: 12 set. 2019.

17. SILVA DE AZEVEDO, F. R. Complete System for Quadcopter Control, Porto Alegre, 2014.

18. SANTOS, M. C. P. et al. An adaptive dynamic controller for quadrotor to perform trajectory tracking

tasks. J. Intell. Robot. Syst., p. 5-16, 2019.

19. JAYAKRISHNAN, H. J. Position and attitude control of a quadrotor UAV using super twisting sliding

mode. IFAC Pap. Online, p. 284-289, 2016.

20. XIONG, J. J.; ZHENG, E. H. Position and attitude tracking control for a quadrotor UAV. ISA Trans.,

2014.

21. NADDA, S.; SWARUP, A. Improved quadrotor altitude control design using second-order sliding

mode. J. Aerosp. Eng., 2017.

22. MOAWAD, N. M.; ELAWADY, W. M.; SARHAN, A. M. Adaptive PID sliding surface-based second order

sliding mode controller for perturbed nonlinear systems. In Proceedings of the 12th International

Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, p. 19-20, dez. 2017.

23. GONZÁLEZ, I.; SALAZAR, S.; LOZANO, R. Chattering-free sliding mode altitude control for a quad-

rotor aircraft: Real-time application. J. Intell. Robot. Syst. , p. 137-155, 2014.

24. MULIADI, J.; KUSUMOPUTRO, B. Neural network control system of UAV altitude dynamics and its

comparison with the PID control system. J. Adv. Trans., p. 1-18, 2018.

25. MUSTAPA, Z. et al. Altitude controller design for multi-copter UAV. In Proceedings of the IEEE

International Conference on Computer, Communication, and Control Technology., Langkawi,

Malaysia, set. 2014.

26. SANTOS, M. F. et al. Simulation and comparison between a linear and nonlinear technique applied to

altitude control in quadcopters.. In Proceedings of the 18th International Carpathian Control

Conference (ICCC)., Sinaia, Romania, p. 234-239, maio 2017.

27. POUNDS, P. E. I.; BERSAK, D. R.; DOLLAR, A. M. Stability of small-scale UAV helicopters and

quadrotors with added payload mass under PID control. Auton. Robots, p. 129-142, 2012.

28. SALIH, A. L. et al. Modelling and PID controller design for a quadrotor unmanned air vehicle. In

Proceedings of the IEEE International Conference on Automation, Cluj-Napoca, Romania, maio

Reinforced Learning for UAV Attitude Control 2019

Page 66 of 69

2010.

29. LI, J.; LI, Y. Dynamic analysis and PID control for a quadrotor. In Proceedings of the IEEE

International Conference on Mechatronics and Automation., Beijing, China, ago. 2011.

30. AHMED, A. H. et al. Attitude stabilization and altitude control of quadrotor. In Proceedings of the

12th International Computer Engineering Conference (ICENCO), Cairo, Egypt, dez. 2016.

31. KHAN, H. S.; KADRI, M. B. Attitude and altitude control of quadrotor by discrete PID control and non-

linear model Predictive control.. In Proceedings of the International Conference on Information and

Communication Technologies (ICICT), Karachi, Pakistan, dez. 2015.

32. BOLANDI, H. et al. Attitude control of a quadrotor with optimized PID controller. Intell. Control

Autom., p. 335-342, 2013.

33. THANH, H. L. N. N.; HONG, S. K. Quadcopter robust adaptive second order sliding mode control

based on PID sliding surface.. IEEE, 2018.

34. THANH, H. L. N. N.; NGUYEN, N. P.; HONG, S. K. Simple nonlinear control of quadcopter for collision

avoidance based on geometric approach in static environment.. Int. J. Adv. Robot. Syst. , 2018.

35. NGUYEN, N. P.; HONG, S. K. Fault-tolerant control of quadcopter UAVs using robust adaptive sliding

mode approach. Energies, dez. 2019.

36. NGUYEN, N. P.; HONG, S. K. Position control of a hummingbird quadcopter augmented by gain

scheduling.. Int. J. Eng. Res. Technol. , nov. 2018.

37. MILHIM, A. B.; ZHANG, Y. Gain Scheduling based PID controller for fault tolerant control of a quad-

rotor UAV.. In Proceedings of the AIAA Infotech@Aerospace, Atlanta, USA, abr. 2010.

38. GAUTAM, D.; HA, C. Control of a quadrotor using a smart self-tuning fuzzy PID controller. Int. J. Adv.

Robot. Syst., out. 2013.

39. GOODARZI, F.; LEE, D.; LEE, T. Geometric nonlinear PID control of a quadrotor UAV on SE(3). In

Proceedings of the European Control Conference (ECC), Zürich, Switzerland, jul. 2013.

40. TAKAGI, T.; SUGENO, M. Fuzzy identification of systems and its applications to modeling and control.

IEEE Trans. Syst. Man Cybern., p. 116-132, 1985.

41. LIU, H.; SHI, P.; CHADLI, M. Finite-time stability and stabilisation for a class of nonlinear systems with

time-varying delay. Int. J. Syst. Sci., 2016.

Reinforced Learning for UAV Attitude Control 2019

Page 67 of 69

42. ESTRADA, F. R. L. et al. LPV Model-based tracking control and robust sensor fault diagnosis for a

quadrotor UAV.. J. Intel. Robot. Syst. , 2016, p. 163-177.

43. RANGAJEEVA, S. L. M. D.; WHIDBORNE, J. F. Linear parameter varying control of a quadrotor. In

Proceedings of the 6th International Conference on Industrial and Information Systems,

Peradeniya, Sri Lanka, ago. 2011.

44. JOUKHADAR, A.; ALCHEHABI, M.; JEJEH, A. Advanced UAVs Nonlinear Control Systems and

Applications.

45. MALEKY, K. N. et al. A reliable system design for nondeterministic adaptive controllers in small uav

autopilots. Digital Avionics Systems Conference (DASC), p. 1-5, IEEE/AIAA 2016.

46. SANTOSO, F.; GARRATT, M. A.; ANAVATTI, S. G. State-of-the-art intelligent flight control systems in

unmanned aerial vehicles. IEEE Transactions on Automation Science and Engineering, 2017.

47. LUND, H. H.; MIGLINO, O.; NOLFI, S. Evolving mobile robots in simulated and real environments.

Artificial life, v. 2, p. 417-434, 1995.

48. JAGANNATHAN, S.; DIERKS, T. Output feedback control of a quadrotor uav using neural networks.

IEEE transactions on neural networks, v. 21, p. 50-66, 2010.

49. GUIRIK, A.; BOBTSOV, A.; BUDKO, M. Hybrid parallel neuro-controller for multirotor unmanned

aerial vehicle. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT),

8th International Congress on. IEEE, p. 1-4, 2016.

50. SHEPHERD III, J. F.; TUMER, K. Robust neuro-control for a micro quadrotor. in Proceedings of the

12th annual conference on Genetic and evolutionary computation, 2010.

51. WILLIAMS-HAYES, P. S. Flight test implementation of a second generation intelligent flight control

system. infotech@ Aerospace, AIAA-2005-6995, p. 26-29, 2005.

52. LUUKKONEN, T. Modelling and Control of Quadcopter.

53. ALDERETE, T. S. Simulator Aero-Model Implementation. NASA Ames Research Center, California,

USA.

54. ORTEGA, M. G.; RAFFO, G. V.; RUBIO, F. R. An integral predictive/nonlinear H1 control structure for a

quadrotor helicopter. Automatica, v. 46, 2010.

55. BOUADI, H.; TADJINE, M. Nonlinear observer design and sliding mode control of four rotors

helicopter. Proceedings of World Academy of Science, Engineering and Technology, p. 225-230,

Reinforced Learning for UAV Attitude Control 2019

Page 68 of 69

2007.

56. WASLANDER, S. L. et al. Quadrotor helicopter flight dynamics and control: Theory and experiment.

Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, ago. 2017.

57. HUANG, H. et al. Aerodynamics and control of autonomous quadrotor helicopters in aggressive

maneuvering. IEEE International Conference on Robotics and Automation, 2009.

58. DAYANA, P.; NIV, Y. Reinforcement learning: The Good, The Bad and The Ugly, 2008.

59. GULLAPALLI, V. A Stochastic Reinforcement Learning Algorithm for Learning Real-Valued Functions.

Neural Networks, v. 3, p. 671-692, 1990.

60. WILLIAMS, R. J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement

Learning. Machine Learning, v. 8, p. 229-256, 1992.

61. MOORE, A.; WILLIAMS, R. J. Gradient Descent for General Reinforcement Learning. Advances in

Neural Information Processing Systems 11, MIT Press, 1999.

62. MORBIDI, F.; CANO, R.; LARA, D. Minimum-Energy Path Generation for a Quadrotor UAV. IEEE

International Conference on Robotics and Automation, Stockholm, Sweden, 2016.

63. MANCUSO, R. et al. Reinforced Learning for UAV Attitude Control, 2018.

64. PLAPPERT, M.; HOUTHHOOFT, R.; ET. AL. Parameter Space Noise for Exploration, 2017.

65. SILVER, D.; ET. AL. Deterministic policy gradient algorithms. ICML, 2014.

66. IOFFE, S.; SZEGEDY, C. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shif, 2015.

Reinforced Learning for UAV Attitude Control 2019

Page 69 of 69

