G

EESC - UsP IS

University of Sao Paulo
Sao Carlos School of Engineering

Department of Aeronautical Engineering

Author: Caio Augusto Zagria Barbosa

Title: Reinforced Learning for UAV Attitude Control

Sao Carlos

2019

H

Reinforced Learning for UAV Attitude Control | 2019

Page 2 of 69

Reinforced Learning for UAV Attitude Control | 2019

Author: Caio Augusto Zagria Barbosa

Title: Reinforced Learning for UAV Attitude Control

Monograph presented to the Aeronautical
Engineering Course of the Sdo Carlos School
of Engineering of the University of Sao Paulo,
as part of the requirements to obtain the title
of Aeronautical Engineer.

Teacher Advisor: Prof. Dr. Jorge Henrique
Bidinotto

Versao Corrigida

Sao Carlos

2019

Page 3 of 69

Reinforced Learning for UAV Attitude Control | 2019

AUTORIZO A REPRODUCAQO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalografica elaborada pela Biblioteca Prof Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inserndos pelo(a) autor{a).

Zagria Barbo=a, Caioc Auguato

Zlllzx Reinforced Learning for UAV Attitude Control / Caio
Augusto Zagria Barbosa; orientador Jorge Henrique
Bidinotte. S8c Carlos, 2019.

Monografia (Graduagdc em Engenharia Aerconautica)
== Escola de Engenharia de 58c Carlos da Universidade
de S58c Paulo, 2019.

l. UAV. 2. Control Techniques. 3. Reinforced
Learning. 4. FPID. 5. Técnicas de Controle. 6.
Aprendizagem de Maquina. I. Titulo.

Eduardo Graziosi Silva - CRB - 8/8907

Page 4 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 5 of 69

Reinforced Learning for UAV Attitude Control | 2019

ERRATUM

Erratum

Where is written

Should be

Page 6 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 7 of 69

Reinforced Learning for UAV Attitude Control | 2019

ASSESSMENT OR APPROVAL SHEET

Candidato: Caio Augusto Zagria Barbosa

Titulo do TCC: Reinforced Learning Applied for UAV Attitude Control

Data de defesa: 21/11/2019

Comissao Julgadora Resultado
Professor Titular Eduardo Morgado Belo {E_LEZ) /H7 ura— -
Instituicdo: EESC - SAA

Professor Titular Glauco Augusto de Paula Caurin Q J’f‘ o / ‘\\-;;x"\h e
Instituiggo: EESC - SAA V

Presidente da Banca: Professor Titular Eduardo Morgado Belo

Edhen D TP
{aa;simatthra}D ‘

Page 8 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 9 of 69

Reinforced Learning for UAV Attitude Control | 2019

RESUMO

Barbosa, C. A. Z. Reinforced Learning for UAV Attitude Control. 2019. 81 f. Monografia (Trabalho de
Conclusdo de Curso) — Escola de Engenharia de Sdo Carlos, Universidade de S3o Paulo, Sdo Carlos, 2019

Transportar pessoas é uma tarefa muito complexa e que exige seguranc¢a. Um dos principais problemas
é que essa tarefa exige um controlador de atitude extremamente confiavel. Entretanto, projetar um
controlador de atitude para quadricdpteros de alto desempenho e confiabilidade ndo é uma tarefa
trivial, pois seu modelo fisico possui um alto grau de complexidade: é desejavel que os controladores de
vbo para drones de passageiros possam tolerar falhas; adaptar-se as mudancas na carga util e / ou no
ambiente; e otimizar a trajetdria de voo. O desenvolvimento de sistemas inteligentes de controle de véo
é uma drea ativa de pesquisa, especificamente através do uso de redes neurais artificiais, uma opcdo
atraente, pois sdo aproximadores universais e resistentes ao ruido. Através de simula¢des usando o
ambiente de desenvolvimento em Python, estudamos a exatiddo e precisdo do controle inteligente de
atitude treinados usando DDPG (Deep Deterministic Policy Gradients) com Reinforced Learning por Ator-
Critico. O sistema de controle RL serd dindmico, alterando as constantes do PID para tentar estabilizar o
qguadricopter. O ator e o critico serdo 2 redes neurais densamente conectadas e distintas, com 2
camadas ocultas. Os resultados serdo comparados com o simples controle PID ajustado usando o
método de busca na grade de parametros para selecionar os melhores ganhos. Embora nos
concentramos especificamente na criagdo de controladores para um quadricéptero, os métodos
desenvolvidos por este trabalho aplicam-se a uma ampla gama de aeronaves ndo tripuladas com varios
rotores e também podem ser estendidos a aeronaves de asa fixa. No final, este trabalho nos mostrou
que é possivel controlar um quadricéptero usando técnicas de Reinforced Learning. No entanto, o
modelo convergiu apenas para angulos pequenos, o que torna impossivel comparar o resultado do PID
original com os resultados do controlador RL. No entanto, ndo podemos dizer que o PID é melhor que o
RL ou o contrdrio é verdadeiro porque a estabilidade do RL e a resposta a condi¢des ndo lineares,
alteragGes na carga util e perturbacbes externas ndo foram testadas. Para trabalhos futuros, além de
testar a estabilidade do controlador RL, é recomenddvel tentar a pesquisa numa grade de parametros
para otimizar o hiperparametros , bem como a normalizacdo de minilote.

Palavras-chave: UAV. Técnicas de Controle. Reinforced Learning. PID.

Page 10 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 11 of 69

Reinforced Learning for UAV Attitude Control | 2019

ABSTRACT

Barbosa, C. A. Z. Reinforced Learning for UAV Attitude Control. 2019. 81 f. Monografia (Trabalho de
Conclusdo de Curso) — Escola de Engenharia de Sdo Carlos, Universidade de S3o Paulo, Sdo Carlos, 2019.

Carrying people is a very complex and safety demanding task. One of the main problems is that this task
demands a good reliable attitude controller. Therefore, designing an quadcopter attitude controller with
superior performance, is not a trivial task as its physical model has some high degree of complexity: is
desirable that passenger UAV flight controllers are able to tolerate faults; adapt to changes in the
payload and/or the environment; and to optimize flight trajectory, to name a few. The development of
intelligent flight control systems is an active area of research, specifically through the use of artificial
neural networks which are an attractive option given they are universal approximators and resistant to
noise. Through simulations using Python environment, we study the accuracy and precision of attitude
control provided by intelligent flight controllers trained using Deep Deterministic Policy Gradients
(DDPG) with Actor-Critic Reinforced Learning. The RL control system will be dynamic changing the PID
constants while trying to stabilize the quadcopter. The actor and critic will be 2 different fully dense
connected neural networks with 2 hidden layers. Results will be compared over simple PID control tuned
using parameter grid search method to selecting the gains. While we specifically focus on the creation of
controllers for a quadcopter, the methods developed hereby apply to a wide range of multi-rotor UAVs,
and can also be extended to fixed-wing aircraft. At the end, this work has shown us that is possible to
control a quadcopter using Reinforced Learning techniques. However, the model only converged for
small angles, what makes impossible to compare the original PID result with the Reinforced Learning
results. However, we cannot say that PID is better than RL or the opposite is true because the RL
stability and response to non-linear conditions, payload change as well as external perturbations were
not tested. For future works, in addition to testing the RL stability, is recommended to try parameter
grid search optimization for the Reinforced Learning control as well as mini-batch normalization.

Keywords: UAV. Control Techniques. Reinforced Learning. PID.

Page 12 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 13 of 69

Reinforced Learning for UAV Attitude Control | 2019

INDEX OF FIGURES
Figure 1.1: General Atomics MQ:9 REAPET —...ccueeiiiieiiie et ectee et e e et e e e e ere e e e e e e e s e ateeeeentaeeeenreeas 21
Figure 1.2: Quadcopter (Q450 Model based) — Subcategory of UAVccceeveevvie e 21
Figure 1.3: Bombs over Venice - First UAVS in NiSTOrY.....ccocciiiiiiiiiiicciee ettt 22
Figure 1.4: The Q2A/C targets were the first unmanned drone targets used by the Navy at WSMR
STArTING IN 1959, ...ttt et e e e s st r et e e e e s e s bbbt e e e e e e s e aabeeeeeeeseeaaastbeeaeeeeeesannnrres 22
Figure 1.5: BQM-34 Firebee ready to be lunched from a ..o 23
Figure 1.6: Predator RQ-L1L UAV ...ttt e st e e e vte e e e e ate e e s e ata e e e e nabae e s enataee s e nbeeeeennseeas 24
Figure 1.7: Oehmichen NO 2 QUAdCOPLET .. .uiiiiiiiiiieeiiee ettt e e et e e e e e s s b e e e e snbeee s sareeas 25
Figure 1.8:Convertawings Model A QUAACOPLETceieuviieieiiiie ettt e e et e et e e e e saree e e eabeee e enareeas 25
Figure 1.9: First Electric Passenger Drone - ENANg 184..........ueiioiiiiiieciiee ettt e e svee e e e e e 26
Figure 1.10: Inner-loop and Outer-loop applied for UAV control (illustrative)ccccceeveveeeveeesieeesieeennen. 27
Figure 2.1: The inertial and body frames of QUAdCOPLEreiieciiiiieiee e 29
Figure 2.2: Reinforced Learning - EXamPIeooo ittt ettt e e et e e e e nreeas 36
Figure 2.3: Reinforced Learning - Basic SCheMAtiCccvveiiiiiiiiiiiiiii ettt 37
Figure 2.4: Reinforced Learning taxonomy as defined by OpenAl..........ccoociieiiciiiie e 38
Figure 2.5: Schematic overview of an actor-critic algorithm.coooiiii e, 48
Figure 2.6: A fully connected layer in @ deep NEIWOIKcooeviiiiiiiiiiece e 51
Figure 2.7: A multilayer deep fully connected NETWOIKooeieiiiiiiieeeee e 52
Figure 2.8: Dropout randomly drops neurons from a network while training. Empirically, this technique
often provides powerful regularization for network training.ccccceevciiiiieiiee e 53
Figure 3.1: Actor Neural Network archit@CtUIeoocviii i et e 56
Figure 3.2: Critic Neural Network archit@CtUIe........ooucuiiiiiiiie e e 56
Figure 4.1: PID controller response — 3D CoOrdiNates.......cccuuiiieiiiiieiiiiiieecieeeesieeeeeee e s vee e e seneee e saveeas 59
Figure 4.2: PID controller response — 3D Path........cooeiiiii ettt e e e 60
Figure 4.3: PID controller response — Angular VElOCIties.........ccccuviiiiiiiiiiciieee ettt 60
Figure 4.5: Reinforced Learning controller response — 3D Coordinates........ccceeveveeeeriiieeeeiiieeeeeiiee e 61
Figure 4.6: Reinforced Learing controller response — 3D path.......cccoccuieeeeiiiee e e 62
Figure 4.7: Reinforced Learning controller response — Angular Velocities......cccccvveeviieeiiiiiieeecciiee e, 62

Page 14 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 15 of 69

Reinforced Learning for UAV Attitude Control | 2019

INDEX OF TABLES

Table 1: DJI PRANTOM 2 = ParamEterS....uuuuuuuueeeeererereierererererureserererererereresesereseseseee............—.—.—................————. 54
LI L1 TSIP AR Do T o Lo TN A =1 o] =T PRSPPI 57

Page 16 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 17 of 69

Reinforced Learning for UAV Attitude Control | 2019

TABLE OF CONTENTS
ERRATUM ...ttt sttt ettt e b e s bt s a e e s it et e e bt e bt e s bt e sateeab e e bt e bt e beesbeesaeeeateebeenbeesaeesanenas 6
ASSESSMENT OR APPROVAL SHEET ...ttt ee e et et ee e e e e e e e e e e e e ee e e e e e e e e ee e e e e e e e e eseeeseeeeeees 8
LY =N 1V [LR PPPPPPPPTPPRE 10
FAY 2 N 1V Y O [P PTPTPRN 12
INDEX OF FIGURES ...ttt ettt sttt ettt st et e bt e s bt s me e sat e et e e nbeesbeesaeesanesabeeaneens 14
INDEX OF TABLES ...ttt sttt ettt sttt et e s bt s at e st st e bt e bt e s be e sme e sab e et e et e e sbeesabesanesaneeneennes 16
TABLE OF CONTENTS. ...ttt ettt ettt ettt e e e e e st e e e e e e s s e e e ee e e e e e e ansbe e eeeeeesaaaannbebeeeeeesaannnnreneeeeas 18
Lo INEPOUCTION ettt ettt e s bt e e s bt e e bt e e s abe e s beeesabeesabeesabeeesabeesabeeesbeesabeeesanes 21
P - - Tl <=4 o 1U1 o RSP SPR 29
2.1 Quadcopter Mathematical Modellingcoovuiiiiioiiie e 29
2.1.1 NEWLON-EUIEr EQUATIONS ..ecciiiiiee ettt ettt e e tee e e et e e e e eab e e e e e eabae e e eataeeeenneeas 31
2.1.2 AerodyNamiCal EffECLS ...uuiii i e et e e e 32
2.2 OTUETo [olo] o) <] g @loT o]t o] I I o T=To Y VUSRSt 33
221 PD CONIOL ..ttt ettt et et ettt e st e sttt e st e e sabe e s bbe e sabeessnteesnbeesabaeesareens 33
222 PID CONEIOL ...ttt ettt ettt e st e sttt e sabe e sabe e s bteesabeessbeeesabeesanaeesareens 35
2.3 [0] oY gol=Te =TT oY o~ PRSI 36
2.3.1 Elements of Reinforced LEArNiNGcocuviiiiciiie ettt e e et e e e 37
2.4 Reinforcement Learning AlgOrithmSoooiiiii it 37
2.4.1 Model-Free Reinforced LEarNiNgcoccuiiieieciieeieiee ettt et e e ete e e e e e s svae e e e 38
2.4.1.1 Policy optimization or policy-iteration methodsccceeuveeiiiiiiiiciee e, 38
o [V Cl - e [=T o A £ 1 C) PSR UURUSPRRN 38
Asynchronous Advantage ACtor-Critic (A3C)cccuueeeiiiiee et e e ree e e ree e e e areeas 39
Trust Region Policy Optimization (TRPO).......ueiiiiiiiieeiiee ettt ree e et e e vae e e 39
Proximal Policy Optimization (PPO)uei ittt etee e e tee e e et e e e araeas 39
2.4.1.2 Q-learning or value-iteration Methods.......cccccviiiiiiiiii i 39
Deep Q Neural NEtWOrk (DQIN)......occcueeeiieeciiee ettt eecteeesteeesreeerteeesreeebae e abeeeebeeessseesaseeeseeesseeenns 40
Distributional Reinforcement Learning with Quantile Regression (QR-DQN)ccceeevvveeveennne 40
. T o 1Y/ o o o U UERRNt 40
2.4.2 Model-Base Reinforced LEArniNg........occuieeeciie i ittt e et e e 40

Page 18 of 69

Reinforced Learning for UAV Attitude Control | 2019

2421 LearN the MOdEl.. .o ittt st s s e 40
2422 GIVEN ThE MOEL ..ot e e s 41

2.5 TalKing @bOUL REWAITcoiiiiiiiiciiiee ettt e e e e e re e e e s abe e e e e abe e e e e nnbaeeeenreeeeenrenas 41
251 DiSCOUNLEA REWAIT ...ttt sttt s st s e e be s 42
2.5.2 AVEIAgE REWAITviiiiiiiee ettt ettt et e e e ete e e ettt e e e e s ttee e e e abbaeeesnstaeeeennsaeesenseeeeennrenas 43

2.6 Talking about Stochastic Policy Gradient TheOrems.........coccveeeiicieeeiniieee e 44
2.6.1 Theorem 1 (POliCY Gradi@nt)cueecieeiiieeciee et etre et rere e ee e s e e s raeesnnee s 44
2.6.2 Theorem 2 (Policy Gradient with Function ApproxXimation).........cccceeeeceeenieencieeecveesnennn 45

2.7 Talking about Deterministic Policy Gradients..........coocieiieiiieie e e 45
2.8 Actor-Critic ReINfOrced LEArNING......ccccuviiieeieee ettt e ee e et e e e bee e e e aaee e e enreeas 46
2.8.1 (@ g Tl 0] o LYY =14 Vo To L3R 46
2.8.2 Actor-only Methods and the Policy Gradientccoociiiiiiiiiericee e 47
2.8.3 Actor-Critic Algorithms — StOChASTICvviiiiiiiiiece e 48
2.8.4 Actor-Critic Algorithms — DeterministiC......ccceieeciieiieiiie e 50

2.9 Neural Network — FUNCLION APProXimatorccccuieeiieiieeeecieee e ecttee e e et e e sree e e e ebre e e e 50
2.9.1 What is a Fully Connected Deep NETWOIK?cccuviieeiiiiieccieee et 50
2.9.2 Dropout REGUIAMIZAtIONciiiciiii et e e e 52

S TN |V =1 d o To o [] o T =V 2P PPPPPPRNt 54
3.1 Quadcopter Simulation — RL ENVIFONMENTeviiiiiiiiiiicieee ettt e e 54
3.2 RL REWAId METNOM. ... ittt ettt e be e she e st s b e beens 55
3.3 Actor and Critic — Structure and TraiNiNgccccuiiiieee e e e e rarreeee s 55

A, RESUIES ettt h et ettt b e b e bt a et et e e be e bt e eh e e ea b e e bt et e e bt e abeeeaeeeateeatean 59
4.1 PID CONErollEd RESPONSE. ...cieiiiieieiieee ettt eetee et e e et e e e etee e e e sabae e e e sabee e e ssabaeeesenbeeeessnseeeeennsenas 59
4.2 Reinforced Learning Response — (RL + PD CONTIONET) ...cccieeeciieeiiee ettt 61
LT €] 4Tl [D11 To o OO PP PR PRTPRPOPRTRPRS 63
B. REFEIENCES ...ttt ettt b e s h e st e st e et e e bt e bt e sbeesateeabeebeeebeesbeesaeenas 64

Page 19 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 20 of 69

Reinforced Learning for UAV Attitude Control | 2019

1. Introduction
Before proceed with a brief history of UAVs and quadcopters, let’s see 2 important definitions. These
definitions were found and copied online from ‘Drone and Quadcopter’ website: [1]

e “Drone” is a broad term used to describe any kind of unmanned aerial vehicle (UAV). As such, it can
be used to describe both UAVs that are remotely controlled and those that are controlled by
onboard computers. These types of aerial craft can look either like a small airplane or like a
helicopter. They generally have two characteristics that set them apart as drones: They are engine-
controlled, and they can fly for long periods of time.

e “Quadcopter” is a more specific term used to refer to a drone that is controlled by four rotors. It is
also called a quadrotor or a quadrotor helicopter. The rotors on the quadcopter each consist of a
motor and a propeller. In addition, these UAVs are always controlled remotely instead of being
controlled by a pre-programmed, onboard computer. Quadcopters resemble helicopters, but
balance themselves by the movement of the blades and not by the use of a tail rotor. It is also a
subcategory of “multirotor”.

Figure 1.1: General Atomics MQ-9 Reaper - Figure 1.2: Quadcopter (Q450 Model based) —
Fixed Wing (subcategory) UAV Subcategory of UAV

Source: Wikipedia (2019) Source: Elecbits (2019)

The first stop in our drone history timeline is the very early history of drones. By this definition, the
earliest unmanned aerial vehicle in the history of drones was seen in 1839, when Austrian soldiers
attacked the city of Venice with unmanned balloons filled with explosives. [2]

Some of these Austrian Balloons were successful, but a number of them blew back and bombed the
Austrians’ own lines, so the practice did not become widely adopted (clever decision). However, the
invention of winged aircraft changed everything for manned and unmanned vehicles alike.

Page 21 of 69

Reinforced Learning for UAV Attitude Control | 2019

Figure 1.3: Bombs over Venice - First UAVs in history
_

Source: History Today (Volume 8 Issue 6 June 1958)

Already in 1951, in the USA, the first modern UAV, known as Firebee (Q2A), appears. Using a
rudimentary datalink, it was remotely controlled by the operator aboard a nearby military aircraft. And
their mission was to help train fighter pilots, helping them adapt to the new generation of modern
aircraft and weaponry for intercepting enemy aircraft. Also, it is observed that such UAVs did not have
any control system for their self-stabilization, depending only on the expertise of their operator.

Figure 1.4: The Q2A/C targets were the first unmanned drone
targets used by the Navy at WSMR starting in 1959.

" 4
Source: White Sands Missile Range Museum

Page 22 of 69

Reinforced Learning for UAV Attitude Control | 2019

So, following the escalating tensions of the end of the Cold War and the Vietnam War, the US attempted
to develop new UAVs for aerial surveillance and attack, but was unsuccessful. They therefore upgraded
the Firebee UAVs, increasing their autonomy to up to 8 flight hours and receiving, for the first time, a
control system that allowed pre-programmed missions and even autonomous flight on some routes.
These were called the BQM-34 Firebee and, launched from the C-130 Hercules, were widely used
successfully during the Vietnam War and the Yom Kippur War for aerial surveillance and as baits for the
discovery of anti-aircraft batteries. Its last use occurred in the operation "lraq Freedom" which began in
2003 after the 9/11 attacks.

Figure 1.5: BQM-34 Firebee ready to be lunched from a
C-130 Hercules

o >
Source: Wikipedia (2019)

g

In 1995, the Predator RQ-1L UAV (General Atomics) was the first deployed UAV to the Balkans and was
proved very effective for surveillance and tracking targets.

The terrorist attacks on the US in 2001 led to the so-called 'war on terror' and a decisive shift in the
military strategy of the US and its allies. The war on terror has been a battle waged against asymmetric
opposition — usually small groups, or even individuals, who may be dispersed, highly mobile and located
in remote locations. The US response to these challenges has been a policy of persistent surveillance
and a significant increase in the speed and versatility of attacks: developing capabilities for persistent
surveillance, tracking, and rapid engagement.

Page 23 of 69

Reinforced Learning for UAV Attitude Control | 2019

Figure 1.6: Predator RQ-1L UAV

Source: General Atomics

Armed Predator operational flights over Afghanistan began on 7 October 2001 [7] with the first Predator
drone strike taking place in early November 2001. Details of this first strike, like much that information
about drone wars, is swathed in secrecy and confusion. In the first two months of operations in
Afghanistan, some 525 targets were laser designated by Predators and, according to Pete Singer, author
of Wired for War, ““the generals who once had no time for such systems couldn’t get enough of
them.”[8]

A year later in November 2002 the first lethal operation using a Predator drone took place in Yemen.
This time there were no other aircraft involved, just a Predator being controlled by a pilot sitting at
Camp Lemmonier in Djibouti. [9]

Greatly accelerated by the use of UAVs in the American war in Afghanistan (2001), there was given rise
to a number of researches that eventually created the new and modern UAVs and their diverse areas of
activity, not just military, as we know it today [4].

According to a recent report by Goldman Sachs [11], military spending will remain the main driver of
drone spending in the coming years. Goldman estimates that global militaries will spend $70 billion on
drones by 2020, and these drones will play a vital role in the resolution of future conflicts and in the
replacement of the human pilot.

But, what about the quadcopters in this context? Quadcopters were among the first vertical take-off and
landing vehicles (VTOLs) and its history goes back to 1920 with Oehmichen 2, invented by Etienne
Oehmichen. This aircraft made 1000 successful flights and flew a recorded distance of 360 meters.

Earlier helicopters used tail rotors to counterbalance the torque, or rotating force, generated by a single,
main rotor. The tail rotor on a single rotor helicopter design consumes between 10 and 15% of the
engine power, yet it creates no lift or forward thrust. Part of the main rotor rotates over the fuselage,
pushing down washed air against it, reducing effective lift. This was wasteful and inefficient. Engineers
developed quadcopters to solve the problems that helicopter pilots had with making vertical flights.

Page 24 of 69

Reinforced Learning for UAV Attitude Control | 2019

Figure 1.7: Oehmichen No 2 Quadcopter

Source: Wikipedia (2019)

Around the same time George de Bothezat built and tested his quadcopter for the US army, completing
a number of test flights before the program was scrapped. The ‘Convertawings Model A’ quadcopter
designed by Dr. George E Bothezat, appeared in 1956. It was the first to use propulsion, or a propeller’s
forward thrust, to control an aircraft’s roll, pitch and yaw. The Curtis Wright V27, developed by the
Curtis Wright Company, followed in 1958.

Figure 1.8:Convertawings Model A Quadcopter

Source: Aviastar (1969)

Early quadcopters would typically have the engine sitting somewhere centrally in the fuselage of the
copter, driving the 4 rotors via belts or shafts. Belts and shafts however are heavy and importantly,
subject to breakage. As the 4 rotors of a quadcopter are all slightly different from each other, a
quadcopter is not naturally stable, simply running 4 rotors at the same speed, while producing enough

Page 25 of 69

Reinforced Learning for UAV Attitude Control | 2019

lift to hover the copter, does NOT produce stable flight. On the contrary, quadcopters have to be
constantly stabilized. In the absence of computers, this meant a monumental workload for the pilot. [16]

As a result, multicopter designs were abandoned in favor of single, or on rare occasions for very large
transport helicopters, double rotor designs.

However, with the advent of electric motors and especially microelectronics and micromechanical
devices, a few years ago, it became possible to build reliable and efficient multirotor. Modern
multicopters have an electric motor mated to each rotor, sitting directly below or above it. A flight
computer constantly monitors the orientation of the copter and corrects for instability by changing not
the pitch of the rotors but simply the rpm of the individual motors/rotors. This fixed pitch design is
much simpler than the complex swashplate mechanics that are required for single rotor helicopters.

Today you can buy quadrotor drones—also known as quadcopters—of just about any kind, for just
about any price. The extremely wealthy can buy gold-plated quads, and the rest of us can buy tiny
plastic ones. And, most important for this work, the scaling up of this to aircraft that are able to carry
people has only just begun. [15]

Figure 1.9: First Electric Passenger Drone - Ehang 184

Source: Wikipedia (2019)

Carrying people is a very complex and safety demanding task. There are many rules and regulatory
agencies analyzing this problem before finally allow people transportation using quadcopters or
multirotor, and thus today there is not certified multirotor for this task. One of the main problems is
that this task demands a good reliable attitude controller. Therefore, designing an attitude controller
with superior performance is one of the most common and important efforts that researchers all around
the world are nowadays undertaking. [17]

Page 26 of 69

Reinforced Learning for UAV Attitude Control | 2019

Controlling the quadcopter dynamics is not a trivial task as its physical model has some high degree of
complexity. Santos et al. [18] presented an algorithm to accomplish quadcopter trajectory tracking tasks
by controlling the altitude through an adaptive dynamic controller that was capable of dealing with
uncertainties in model parameters. Jayakrishnan [19] and Xiong et al. [20] used the sliding mode control
(SMC) technique to control the horizontal position and attitude while also providing a significant
improvement of altitude control. In other studies [21-23], the second order SMC method was also used
to improve quadcopter altitude control performances. Yet another method was presented by Muliadi et
al. [24], where the authors proposed a neural network approach to control UAV altitude dynamics. The
results obtained with this method were verified through comparisons with a conventional proportional—
integral-derivative (PID) control system. However, these approaches [18—-24] have a common
disadvantage in that the SMC technique generates a high chattering control signal method which
reduces the lifetime of the entire system.

Although several control methods have been proposed in the literature, PID control has become the
most widely used technique in a variety of applications all over the world because it is simple and easy
to design and typically delivers a satisfactory performance. The PID approach was used in many studies
[25—-31] to achieve not only quadcopter altitude control, but also attitude stabilization and horizontal
position control. In recent studies [32—35], the authors proposed the use of a multi-loop control
architecture (i.e., inner-loop and outer-loop) to control quadcopters in specific applications. The outer-
loop controllers were designed in different ways while the inner-loop controllers were all implemented
using the PID control law.

Figure 1.10: Inner-loop and Outer-loop applied for UAV control (illustrative)

[¢, 0]
Quter-loop Inner-loop
G e e o Dadates et
| w,! X
T 9 | it -
Refe I : I Attitude —
eference s +P S
e i X, V.Z Dositior _ Control
Trajectory [x..3,.2.] 1 If)smon (f',l I
l| Control b —-—

Source: Joukhadar, Abdulkader et al. (2019)

Nevertheless, the conventional PID controller has several limitations. First, their fixed gains limit system
performance over a wider operational range. When the required range of operation is large, the
conventional PID controller is prone instability, because the nonlinearities in the system cannot be
properly dealt with. Second, as conventional PIDs are based on a linear model, their performance may
suffer in a nonlinear system like a quadcopter. Several studies have attempted to overcome these
shortcomings. Phi et al. [36] presented a gain scheduling PID controller which determines the PID gains

Page 27 of 69

Reinforced Learning for UAV Attitude Control | 2019

by linearly adjusting the gain as a function of tracking errors. In another approach [37], the authors used
a pickup table to schedule the PID gains in a quadrotor fault tolerant control task. Both methods were
able to improve the control performance under different operating conditions. However, it is still a
linear control law which means that it may not perform well in non-linear systems. Furthermore,
scheduling the gains results in discontinuous transitions which may result in sudden jerks or oscillations.

The references indicate that most of the existing methods either are complex to design and implement
or require great computational resources. Meanwhile, PID control law appears to play an important role
for finding a simple and efficient control method for a variety of systems. When exposed to unknown
dynamics (e.g. wind, variable payloads, voltage sag, etc), a PID controller can be far from optimal and
unsafe for people transportation [45].

However is desirable that passenger UAV flight controllers are able to tolerate faults; adapt to changes
in the payload and/or the environment; and to optimize flight trajectory, to name a few. So, a simple PID
controller would not achieve the necessary performance. What about a intelligent flight controller?

The development of intelligent flight control systems is an active area of research [46], specifically
through the use of artificial neural networks which are an attractive option given they are universal
approximators and resistant to noise [47].

Online learning methods (e.g. [48]) have the advantage of learning the aircraft dynamics in real-time.
The main limitation with online learning is that the flight control system is only knowledgeable of its past
experiences. It follows that its performances are limited when exposed to a new event. Training models
offline using supervised learning is problematic as data is expensive to obtain and derived from
inaccurate representations of the underlying aircraft dynamics (e.g. flight data from a similar aircraft
using PID control) which can lead to suboptimal control policies [49], [50], [51].

An alternative to supervised learning for creating offline models is known as reinforcement learning (RL).
In RL an agent is given a reward for every action it makes in an environment with the objective to
maximize the rewards over time. Using RL could make possible to develop optimal control policies for a
UAV without making any assumptions about the aircraft dynamics.

In this context, through simulations using Python environment, will be done the study of accuracy and
precision of attitude control provided by intelligent flight controllers trained using Deep Deterministic
Policy Gradients (DDPG) with Actor-Critic Reinforced Learning. The RL control system will be dynamic
changing the PID constants while trying to stabilize the quadcopter. The actor and critic will be 2
different fully dense connected neural networks (MLP) with 2 hidden layers. Results will be compared
over simple PID control tuned using parameter grid search method to selecting the gains. While this
work specifically focus on the creation of controllers for a quadcopter, the methods developed hereby
apply to a wide range of multi-rotor UAVs, and can also be extended to fixed-wing aircraft.

Page 28 of 69

Reinforced Learning for UAV Attitude Control | 2019

2. Background
In this chapter, some background knowledge will be explained. Even if you already know the concepts

shown here, is always good to remember ©.

2.1 Quadcopter Mathematical Modelling

This item presents the differential equations of the quadcopter dynamics. They are derived from the
Newton-Euler equations. Luukkonen [52] made a very clear and nice paper about modelling the
guadcopter dynamics, his job will be reproduced here.

The quadcopter structure is presented in Figure 2.1 including the corresponding angular velocities,
torques and forces created by the four rotors (numbered from 1 to 4).

Figure 2.1: The inertial and body frames of quadcopter

Source: Luukkonen (2011)

The absolute linear position of the quadcopter is defined in the inertial frame x, y, z — axes with . The
attitude, i.e. the angular position, is defined in the inertial frame with three Euler angles n. Pitch angle ©
determines the rotation of the quadcopter around the y-axis. Roll angle ® determines the rotation
around the x-axis and yaw angle ¢ around the z-axis. Vector g contains the linear and angular position

vectors
Equation 1
X [0) _ f
EZH' n=16], q_[n]'
z Y

The origin of the body frame is in the center of mass of the quadcopter. In the body frame, the linear
velocities are determined by Vg and the angular velocities by v

Page 29 of 69

Reinforced Learning for UAV Attitude Control | 2019

Equation 2
Ux,B p
VB = Uy‘B , v =1q].
UZ,B r

The rotation matrix from the body frame to the inertial frame is:
Equation 3: Rotation matrix
CL'CQ CL""‘S'B ‘gt."? - ‘5-‘!_, C_\(r_'.' CT‘L, ‘99 Crt."‘.l + S i -‘5'(:'.1

R=| S,Cp 5455, +CyCy S,8C; — CyS,
S, CyS, 9Cl

In which S, = sin(x) and C, = cos(x). The rotation matrix R is the orthogonal thus R~1 = RT which is
the rotation matrix from the inertial frame to the body frame.

The transformation matrix for angular velocities from the inertial frame to the body frame is W,, and

from the body frame to the inertial frame is W,;l, as shown in [53],

Equation 4
$1 1 SeTo CoTolep
. -
n 1)[} 0 S¢/Cg C¢/Cg r
p [0 =Sp1[¢
T

0 =Sy CoColly

In which T, = tan(x). The matrix W,, is invertible if 8 # (2k — 1)¢/2, (k € Z).

The quadcopter is assumed to have symmetric structure with the four arms aligned with the body x- and
y-axes. Thus, the inertia matrix is diagonal matrix I in which I, = I,

Equation 5: Inertia matrix

I, O 0
I=10 Iyy 0
0 o 1,

The angular velocity of rotor i, denoted with w;, creates force f; in the direction of the rotor axis. The
angular velocity and acceleration of the rotor also create torque Ty, around the rotor axis

Page 30 of 69

Reinforced Learning for UAV Attitude Control | 2019

Equation 6

— L2 — P2 .
fi = kwi, n; = bwi + Iyw,,

In which the lift constant in k, the drag contant is b and the inertia moment of the rotor is I;. Usually
the effect of @, is considered small and thus it is omitted.

The combined forces of rotors create thrust T in the direction of the body z-axis. Torque Tg consists of
the torques Ty, Tg and Tyin the direction of the corresponding body frame angles

Equation 7

[Lk (= a)2+w4)]
Tg Ilk(w} + w}) |
S

N,
DR

i=1

in which L is the distance between the rotor and the center of mass of the quadcopter. Thus, the roll
movement is acquired by decreasing the 2nd rotor velocity and increasing the 4th rotor velocity.
Similarly, the pitch movement is acquired by decreasing the 1st rotor velocity and increasing the 3th
rotor velocity. Yaw movement is acquired by increasing the the angular velocities of two opposite rotors
and decreasing the velocities of the other two.

2.1.1 Newton-Euler Equations
The quadcopter is assumed to be rigid body and thus Newton-Euler equations can be used to describe

its dynamics. In the body frame, the force required for the acceleration of mass mV'g and the centrifugal
force v X (mVp) are equal to the gravity RT G and the total thrust of the rotors Ty

Equation 8
mVz +v x (mVp) = RTG + Ty

In the inertial frame, the centrifugal force is nullified. Thus, only the gravitational force and the
magnitude and direction of the thrust are contributing in the acceleration of the quadcopter

Equation 9

mé = G + RTj,

Page 31 of 69

Reinforced Learning for UAV Attitude Control | 2019

i 0 CySeCyp + SySe
[y =—g [0 +—|SwSely = CySg .
¥ 1 m CoCy

In the body frame, the angular acceleration of the inertia IV, the centripetal forces v X (Iv) and the
gyroscopic forces I' are equal to the external torque T

Equation 10

v+ vx(v)+T'=1

1% Ixxp 14 [0
v=1I"1 —ql Lyya| -1, ‘le Olwor+7
r I,,r r 11
D (Iyy - Izz)qr/lxx q/Lex 1 Tqb/Ixx
[q] = (Izz - Ixx)pr/lyy Ir [—P/Iyy wr + TB/Iyy
T (Ixx - yy)pQ/Izz 0 TlP/IZZ

In which wr = w; — w, + w3 — w,. The angular accelerations in the inertial frame are then attracted
from the body frame accelerations with the transformation matrix W,;l and its time derivative

Equation 11
i = g (W) = g (W v + Wiy
0 ¢CyTo+6S4/Ch $SpCo + 6Cy/Ch
= |0 —$Sy —$Cy v+ WY
0 ¢Cy/Co+ PpSypTa/Co —PSy/Co+0CyTa/Co

2.1.2 Aerodynamical Effects

The preceding model is a simplification of complex dynamic interactions. To enforce more realistically
behavior of the quadcopter, drag force generated by the air resistance is included. This is devised to
Equation 9 and Erro! Fonte de referéncia ndo encontrada. with the diagonal coefficient matrix
associating the linear velocities to the force slowing the movement, as in [55],

Equation 12
i 0 CypSeCe +SySp| | [Ax 0 O]rx
j} = —g ol +— S¢59C¢ — C¢S¢ —— 10 Ay 0 y
7 ™ CoCy Mio o a4,llz

In which A,, A, and A4, are the drag force coefficients for velocities in the corresponding directions of
the inertial frame.

Page 32 of 69

Reinforced Learning for UAV Attitude Control | 2019

Several other aerodynamical effects could be included in the model. For example, dependence of thrust
on angle of attack, blade flapping and airflow distruptions have been studied in [56] and [57]. The
influence of aerodynamical effects are complicated and the effects are difficult to model. Also some of
the effects have significant effect only in high velocities. Thus, these effects are excluded from the
model and the presented simple model is used.

2.2 Quadcopter Control Theory

Deriving a simplified quadcopter mathematical model makes possible the design of a control system.
The inputs to the system consist of the angular velocities of each rotor. Note that in the simplified model
they are only the square of the angular velocities, wiz, and never the angular velocity itself, w;. For
notation simplicity, the inputs will be assumed as y; = w%. Since w; can be set, y; is clearly set as well.
With this, now is possible to write the system as a first order differential equation in state space. Let x4
be the position in space of the quadcopter, x, be the quadcopter linear velocity, x3 be the roll, pitch,
and yaw angles, and x4 be the angular velocity vector. (Note that all of these are 3-vectors)

With these being the current state, let’s write the state space equations for the evolution of it.

Equation 13
x’l = x2
0
xz = 0 + _RTB + EFD
l—J
[1 0 —Sp -1
x'3 =10 C¢ CQS¢ X4
_O —S¢ C9C¢
_I I -
B yyl 2z wyw,
r(r¢lxx) 1 xx
. I -1 I IZZ - Ixx
X4 = l(Telyy) J_ Iy Wx Wz
-1
(tylzz) L — Ly
T,]

Note that the inputs are not used in these equations directly. However allow us to choose values for T
and T, and then solve for values of y;.

2.2.1 PD Control
This section will bring a brief and simplified explanation about the PD control, how to integrate this

control with the RL control will be explained later.

Page 33 of 69

Reinforced Learning for UAV Attitude Control | 2019

As the main objective is to control the angular velocities and position, the PID control will only be able to
use the angle derivatives in the controller; these measured values will give the derivative of the error,
and their integral will provide the actual error. For Cartesian position control, the procedures are the
same however the dynamic mathematical model refers to the outer loop control (Figure 1.10). For this
work, the idea is only to stabilize the quadcopter in a horizontal position, so the desired velocities and
angles will all be at zero. Torques are related to the angular velocities by T = I8, so let’s set the torques
proportional to the output of our controller, with T = Iu(t). Thus,

Equation 14
- . t . -
(v, [
0
T¢ . t .
Tg | = —1y,y <Kd0 + Kpf 9dt>
TII) 0
t
—I,, <Kd1/} +K, f lj)dt)
L 0 J
From the previously derived relationship between torque and inputs,
Equation 15
— . t . -
o o <Kd¢ + KpJ ¢dt>
0
Lk(y: —v3) ’ t
Tp = Lk(y; —v4) = | -1, <Kd0 + Kpf 0dt>
b(y1 —v2+v3—va) Ot
—1I,, <Kd1/} +K, f ¢dt>
- 0 .

This gives a set of three equations with four unknowns. Then, is possible to constrain this: enforcing the
constraint that inputs must keep the quadcopter aloft:

Equation 16
T =mg

Note that this equation ignores the fact that the thrust will not be pointed directly up. This will limit the
controller applicability, but should not cause major problems for small deviations from stability. If the
gyro sensor is precise enough, it makes possible to integrate the values obtained from the gyro to get
the angles 8 and ¢. In this case, the thrust necessary to keep the quadcopter aloft by projecting the
thrust (mg) onto the inertial z axis is,

Equation 17

Tproj = mg cos 6 cos ¢

Page 34 of 69

Reinforced Learning for UAV Attitude Control | 2019

Therefore, with a precise angle measurement, the thrust would be equal to

Equation 18

myg

~ cosB cosp

In which case the component of the thrust pointing along the positive z axis will be equal to (mg). Is
known that the thrust is proportional to a weighted sum of the inputs:

Equation 19
mg myg

T = —o-n—— = . = e —
cos6 cosg K2y => 2y k cos@ cosg

With this extra constraint, now there are a set of four linear equations with four unknowns ;. Solving
then for each y; obtains the following input values:

Equation 20
_ mg 2beplix + eyl kL
"= Lk cosbeos ¢ DKL
me epl-- egl
Y2 = — ﬂis LS 9}3/3/
4k cos B cos ¢ 4b 2kL
B mg f?.belpfn + £’¢I::kL
73~ Tkcosfcosgp ADkL
_ ms eplz eplyy
T4~ SkcosBeosg | 4b T 2kL

2.2.2 PID Control

A PID control is a PD control with another term added, which is proportional to the integral of the
process variable. Adding an integral term causes any remaining steady-state error to build up and enact
a change, so a PID controller should be able to track the trajectory (and stabilize the quadcopter) with a
significantly smaller steady-state error. The equations remain identical to the ones presented in the PD
case, but with an additional term in the error:

Equation 21

t t ot
e¢=Kd<]5+KpJ(ﬁdt+KifJ(ﬁdtdt
0 0 Y0

t t ot
egde9+Kpf9dt+KifJ9dtdt
0 0 Y0

Page 35 of 69

Reinforced Learning for UAV Attitude Control | 2019

t t ot
e¢=Kdz/)+Kpf1/)dt+Kiffz/)dtdt
0 0“0

2.3 Reinforced Learning

The best definition is given by Barton and Sutton (2015) and reproduced here: “Reinforcement learning
is like many topics with names ending in -ing, such as machine learning, planning, and mountaineering.
Reinforcement learning problems involve learning what to do, how to map situations to actions, so as to
maximize a numerical reward signal. In an essential way they are closed-loop problems because the
learning system's actions in sequence its later inputs. Moreover, the learner is not told which actions to
take, as in many forms of machine learning, but instead must discover which actions yield the most
reward by trying them out. In the most interesting and challenging cases, actions may affect not only the
immediate reward but also the next situation and, through that, all subsequent rewards. These three
characteristics: being closed-loop in an essential way, not having direct instructions as to what actions to
take, and where the consequences of actions, including reward signals, play out over extended time
periods, are the three most important distinguishing features of reinforcement learning problems.”

In a simple way, let’s consider a cute baby learning to walk and trying to reach his target, a coach. The
elements of reinforced learning will be explained in the next item, but the baby body is the
environment, what the baby thinks to do is the policy and how good the baby fells after each action is
the reward.

Figure 2.2: Reinforced Learning - Example

32 4

-
N / Baby reaches the goal
—

—
@ Baby falls down in between

Source: Author

If the baby reaches the goal, he will be happy (high reward) and learns which actions to make that will
lead him to the goal. However, if the baby falls down in between, he will be angry (low reward) and
learns which actions he shouldn’t take.

Page 36 of 69

Reinforced Learning for UAV Attitude Control | 2019

2.3.1 Elements of Reinforced Learning
Beyond the agent and the environment, one can identify four main sub elements of a reinforcement
learning system: a policy, a reward signal , a value function, and, optionally, a model of the environment.

Figure 2.3: Reinforced Learning - Basic schematic

’J Agent ||
state reward action

s, | R A

Rr+1 (.
< Environment
\

Source: Barton and Sutton (2015)

A policy defines how the agent will behave given a state and/or an old action. Thus, is a kind of map that
maps states to actions. Talking for engineers, the policy is equivalent to the control logic in a control
system. In general, policies may be stochastic, however for specific control tasks, the policy is taken as
deterministic.

A reward signal defines how good or bad the system/environment (quadcopter) was at taking the sent
action from the policy. On each time step, the environment sends to the reinforcement learning agent a
single number as reward. The agent's main objective is to maximize the total reward. In a biological
system, we might think of rewards as analogous to the experiences of pleasure or pain and the reward
sent to the agent at any time depends on the agent's current action and the current state of the agent's
environment.

A value function gives the expected reward in a long run, it means, how good is the given state for the
future reward. Roughly speaking, the value of a state is the total amount of reward an agent can expect
to accumulate over the future, starting from that state.

The final element is named model of the environment. Roughly speaking, this is the system to be
controlled, it means, the quadcopter. Thus, given a state and action, the model might predict the
resultant next state and next reward.

2.4 Reinforcement Learning Algorithms

This section pursues to highlight in a non-exhaustive manner the main type of algorithms used for
reinforcement learning (RL). The goal is to provide an overview of existing RL methods on an intuitive
level by avoiding any deep dive into the models or the math behind it.

Model-free methods are statistically less efficient than model-based methods, because information
from the environment is combined with previous, and possibly erroneous, estimates or beliefs about
state values, rather than being used directly. [58] On the other hand, uses experience to learn directly

Page 37 of 69

Reinforced Learning for UAV Attitude Control | 2019

one or both of two simpler quantities (state/ action values or policies), which can achieve the same
optimal behavior but without estimation or use of a world model.

Model-based RL uses experience to construct an internal model of the transitions and immediate
outcomes in the environment. Appropriate actions are then chosen by searching or planning in this

world model.
Figure 2.4: Reinforced Learning taxonomy as defined by openAl
RL Algarithms
) :
f ¥
Model-Free RL Model-Based RL
J L i
'S r l
{ 3 1 3
Policy Optimization Q-Learning Leamn the Model Given the Model
Policy Gradient +—— DOQN World Models L’ AlphaZero
—> DDPG
A2C / A3C +— C51 124
| » TD3 <
PPO o QR-DQN MBMF
| »> SHC -
TRPO -— HER > MBVE

Source: OpenAl (2019)

2.4.1 Model-Free Reinforced Learning
Two main approaches to represent agents with model-free reinforcement learning is Policy optimization
and Q-learning.

2.4.1.1 Policy optimization or policy-iteration methods
In policy optimization methods the agent learns directly the policy function that maps state to action.
The policy is determined without using a value function.

Important to mention that there are two types of policies: deterministic and stochastic. Deterministic
policy maps state to action without uncertainty. It happens when you have a deterministic environment
like a chess table. Stochastic policy outputs a probability distribution over actions in a given state. This
process is called Partially Observable Markov Decision Process (POMDP)

Policy Gradient (PG)
In this method, the policy t has a parameter 0. This it outputs a probability distribution of actions.

Equation 22

n(als) = Pla|s]

Page 38 of 69

Reinforced Learning for UAV Attitude Control | 2019

Then is a must to find the best parameters (8) to maximize (optimize) a score function J(8), given the
discount factor y and the reward r.

Equation 23

J(0) = Eng[Xyr]
Main steps:

e Measure the quality of a policy with the policy score function.
e Use policy gradient ascent to find the best parameter that improves the policy.

Asynchronous Advantage Actor-Critic (A3C)
This method was published by Google’s DeepMind group and covers the following key concept
embedded in it is naming:

o Asynchronous: Several agents are trained in it is own copy of the environment and the model form
these agent’s are gathered in a master agent. The reason behind this idea is that the experience of
each agent is independent of the experience of the others. In this way the overall experience
available for training becomes more diverse.

e Advantage: Similarly to PG where the update rule used the discounted returns from a set of
experiences in order to tell the agent which actions were “good” or “bad”.

e Actor-critic: combines the benefits of both approaches from policy-iteration method as PG and
value-iteration method as Q-learning (See below). The network will estimate both a value function
V(s) (how good a certain state is to be in) and a policy mn(s).

Trust Region Policy Optimization (TRPO)

A on-policy algorithm that can be used or environments with either discrete or continuous action
spaces. TRPO updates policies by taking the largest step possible to improve performance, while
satisfying a special constraint on how close the new and old policies are allowed to be.

Proximal Policy Optimization (PPO)

Also, an on-policy algorithm which similarly to TRPO can perform on discrete or continuous action
spaces. PPO shares motivation with TRPO in the task of answering the question: how to increase policy
improvement without the risk of performance collapse? The idea is that PPO improves the stability of
the Actor training by limiting the policy update at each training step.

PPO became popular when OpenAl made a breakthrough in Deep RL when they released an algorithm
trained to play Dota2 and they won against some of the best players in the world.

2.4.1.2 Q-learning or value-iteration methods
Q-learning learns the action-value function Q(s, a): how good to take an action at a particular state.
Basically a scalar value is assigned over an action a given the state s.

Page 39 of 69

Reinforced Learning for UAV Attitude Control | 2019

Deep Q Neural Network (DQN)

DQN is Q-learning with Neural Networks. The motivation behind is simply related to big state space
environments where defining a Q-table would be a very complex, challenging and time-consuming task.
Instead of a Q-table Neural Networks approximate Q-values for each action based on the state.

Distributional Reinforcement Learning with Quantile Regression (QR-DQN)

In QR-DQN for each state-action pair instead of estimating a single value a distribution of values in
learned. The distribution of the values, rather than just the average, can improve the policy. This means
that quantiles are learned which threshold values attached to certain probabilities in the cumulative
distribution function.

2.4.1.3 Hybrid

Simply as it sounds, these methods combine the strengths of Q-learning and policy gradients, thus the
policy function that maps state to action and the action-value function that provides a value for each
action is learned. Some hybrid model-free algorithms are:

e Deep Deterministic Policy Gradients (DDPG)
e Soft Actor -Critic (SAC)
e Twin Delayed Deep Deterministic Policy Gradients (TD3)

2.4.2 Model-Base Reinforced Learning

Model-based RL has a strong influence from control theory, and the goal is to plan through an f(s,a)
control function to choose the optimal actions. Think it as the RL field where the laws of physics are
provided by the creator. The drawback of model-based methods is that although they have more
assumptions and approximations on a given task, but may be limited only to these specific types of
tasks. There are two main approaches: learning the model or learn given the model.

2.4.2.1 Learn the Model
To learn the model a base policy is ran, like a random or any educated policy, while the trajectory is
observed. The model is fitted using the sampled data. Below steps describe the procedure:

1. run base policy mo(a¢|st) (e.g., random policy) to collect D = {(s, a,s’);}

2. learn dynamics model f(s,a) to minimize Y, || f(s;,a;) — s} ||

3. plan through f(s,a) to choose actions

Supervised learning is used to train a model to minimize the least square error from the sampled data
for the control function. Optimal trajectory using the model and a cost function is used in step three.
The cost function can measure how far we are from the target location and the amount of effort spent.

¢ World models: one of my favorite approaches in which the agent can learn from it's own “dreams”
due to the Variable Auto-encoders.

¢ Imagination-Augmented Agents (12A): learns to interpret predictions from a learned environment
model to construct implicit plans in arbitrary ways, by using the predictions as additional context in

Page 40 of 69

Reinforced Learning for UAV Attitude Control | 2019

deep policy networks. Basically it is a hybrid learning method because it combines model-baes and
model-free methods.

e Model-Based Priors for Model-Free Reinforcement Learning (MBMF): aims to bridge the gap
between model-free and model-based reinforcement learning.

e Model-Based Value Expansion (MBVE): this method controls for uncertainty in the model by only
allowing imagination to fixed depth. By enabling wider use of learned dynamics models within a
model-free reinforcement learning algorithm, we improve value estimation, which, in turn, reduces
the sample complexity of learning.

2.4.2.2 Given the Model
This method is becoming famous in recent time due AlphaGo Zero, that defeated the best go player in
the world. You can found anything you want on Deep Mind’s website.

2.5 Talking about Reward
This section will give an explanation about reward methods. The notation here may have some similar
symbols with the quadcopter dynamics or even control; however they are NOT related to each other.

A reinforced learning algorithm can be used to solve problems modelled as Markov decision processes
(MDPs). An MDP is a tuple < X,U, f, p >, where X denotates the state space, U the action space,
f:XXxXUXX — [0,0) the state transition probability density function and p: X X U X X — R the
reward function.

It is important to note that since state space is continuous, it is only possible to define a probability of
reaching a certain state region, since the probability of reaching a particular state is zero. So, assuming
that a stochastic process to be controlled can be described by the state transition probability density
function f. The probability of reaching a state xy,1 in the region X, ,1 € X from state xj, after applying
action uy, is

Equation 24

P(xgs1 € Xpqrlxp, ug) = f Cege, ug, x")dx'’
KXier1

After each transition to a state xj 1, the controller receives an immediate reward
Equation 25
Tk+1 = P Xk Upe Xpe1)

which depends on the previous state, the current state and the action taken. The action u, taken in a
state xy, is drawn from a stochastic policy m: X X U = [0,).

The goal of the reinforced learning agent is to find the policy T which maximizes the expected value of a
certain function g of the immediate rewards received, while following the policy . This expected value
is cost-to-go function

Page 41 of 69

Reinforced Learning for UAV Attitude Control | 2019

Equation 26

J(m) = E{g(ry, 72, ...)|}

In most cases, the function g is either the discounted sum of rewards received, as explained in the next
items.

2.5.1 Discounted Reward

In the discounted reward setting, the cost function J is equal to the expected value of the discounted
sum of rewards when starting from an initial state xo € X, draw from an initial state distribution
xo~dg (), also called the discounted return

Equation 27
J(m) =E Zykrk+1|d0,n :f d;,‘(x)f n(x,u)f fle,u,x)plx,u,x")dx"du dx
e X U X

Where dj(x) = Y=o Y*p(x, = x|dy,) is the discounted state distribution under the policy 7 and
Y € [0, 1) denotes the reward discount factor.

During the learning process, the agent will have to estimate the cost-to-go function J for a given policy
1. This procedure is called policy evaluation. The resulting estimate of J is called the value function and
two definitions exists for it. The state value function

Equation 28
(o]

V*(x) =E Z Yries1] Xo = x, 7
k=0

Only depends on the state x and assumes that the policy m is followed starting from this state. The
state-action value function

Equation 29
[ee]
Q"(x,u) =E Zykrk+1|x0 =X, U =U,T
k=0

Also depends on the state x, but makes action u chosen in this state a free variable instead of having it
generated by the policy 1. Once the first transition onto a next state has been made, i governs the rest
of the action selection. The relationship between two definitions for the value function is given by

Equation 30

V() = E{Q"(x, wl u~m(x,)}

Page 42 of 69

Reinforced Learning for UAV Attitude Control | 2019

With some manipulation, Equation 28 and Equation 29 can be put into a recursive form. For the state
value function this is

Equation 31
VT(x) = E{p(x,u,x") + yV™(x')}

With u drawn from the probability distribution function (x,) and x’ drawn from f(x,u, -). For the
state-action value function the recursive form is

Equation 32
Q" (x,w) = E{p(x,u,x') +yQ"(x',u")}

with x’ drawn from the probability distribution function f(x,u, -) and u’ drawn from the distribution
mt(x’, +). These recursive relationships are called Bellman equations.

2.5.2 Average Reward
As an alternative to the discounted reward setting, is the approach of using the average return. In this
setting a starting state x, does not need to be chosen, under the assumption that the process is ergotic
and, thus J does not depend on the starting state. Instead, the value functions for a policy T are defined
relative to the average expected reward per time step under the policy, turning the cost-to-go function
into

Equation 33

n—1

J(r) = lim (%)[E{Z rk+1|nl =f d”(x)f n(x,u)f flou,x)plx,u,x")dx'du dx
n—ee X U X

Equation 33 is very similar to Equation 27, except that the definition for the state distribution changed
to d™(x) = limy_. p(xx = x, 7). For a given policy 7, the state value function V™ (x) and state-action
value Q™(x, u) are then defined as

Equation 34

V*(x) =]E{Z(rk+1 —](n))|x0 =X, ”}

k=0
co
Q" (xu) = E{Z(rm —J)lo = %0 = 1, n}
k=0
The Bellman equations for the average reward — in this case also called the Poisson equations — are
Equation 35
Ve(x) +J(m) = E{p(x,u,x') + V" (x")}

Page 43 of 69

Reinforced Learning for UAV Attitude Control | 2019

With u and x’ drawn from the appropriate distributions as before and
Equation 36
Q"(x,u) +J(m) = E{ p(x,u, x") + Q" (x", u')}
Again with x" and u’ drawn from the appropriate distributions.

2.6 Talking about Stochastic Policy Gradient Theorems

Many actor-critic algorithms, now, rely on the policy gradient theorem, proving that an unbiased
estimate of the gradient (Equation 46) can be obtained from experience using an approximate value
function that satisfies certain properties. Roughly speaking, the basic idea is that since the number of
parameters that the actor has to update is relatively small compared to the (usually infinite) number of
states, it is not useful to have the critic attempting to compute the exact value function, which is also a
high-dimensional object. Instead, it should compute a projection of the value function onto a low-
dimensional subspace.

In the case of an approximated stochastic policy, but exact state-action value function QT, the policy
gradient theorem is as follows.

2.6.1 Theorem 1 (Policy Gradient)
For any MDP, in either the average reward or discounted reward setting, the policy gradient is given by

Equation 37

Vol = jx d™(x) ju Vor(x,u)Q™(x, u)dudx

With d™(x) defined for the appropriated reward setting.

This clearly shows the relationship between the policy gradient VyJ and the critic function Q™ (x, u) and
ties together the update equations of the actor and critic in the Erro! Fonte de referéncia nao
encontrada..

For most applications, the state-action space is continuous and thus infinite, which means that it is
necessary to approximate the state or state-action value function. The result shows that Q™ (x, u) can
be approximated with h,, : X X U = R, parametrized by w, without affecting the unbiasedness of the
policy gradient estimate.

In order to find the closest approximation of Q™ by h,,, let’s try to find the w that minimizes the
quadratic error

Equation 38

N =

[0 Cx,w) — hy (x, W)]?

el (x,u) =

Page 44 of 69

Reinforced Learning for UAV Attitude Control | 2019

The gradient of this quadratic error with respect to w is
Equation 39
Vwew(x,u) = [Q™(x,u) — hy, (x, u)] Vwhy (x,u)

and this can be used in a gradient descent algorithm to find the optimal w. If the estimator of Q™ (x, u)
is unbiased, the expected value of the above equation is zero for the optimal w, it means:

Equation 40

f d™(x) f m(x,u)V,, el (x,u)dudx =0
X U

The policy gradient theorem with function approximation is based on the last equality (Equation 40).

2.6.2 Theorem 2 (Policy Gradient with Function Approximation)

More details about function approximator, for this case a MLP neural network, will be given later in a
specific item, those concepts are not necessary to understand the following equations. So, if h,, satisfies
Equation 40 and:

Equation 41
Vihy, (x,u) = Vylnmy(x,u)
where 1y (x, u) denotes the stochastic policy, parametrized by 9, then

Equation 42

Vol = j d™(x) j Vo t(x,u)h,, (x, u)dudx
X U
An extra assumption is that h actually needs to be an approximator that is linear with respect to some
parameter w and features ¥, i.e. h,, = w1 (x,), transforming Equation 41 into
Equation 43
Y(x,u) = Vo Inmy(x, u)
Features ¥ that satisfy this last equation as known as compatible features.

2.7 Talking about Deterministic Policy Gradients

We now consider how the policy gradient framework may be extended to deterministic policies.
According to [65], the main result from this item will be a deterministic policy gradient theorem,
analogous to the stochastic policy gradient theorem presented in the previous section.

It was previously believed that the deterministic policy gradient did not exist, or could only be obtained
when using a model. However, [65] shows that the deterministic policy gradient does indeed exist, and

Page 45 of 69

Reinforced Learning for UAV Attitude Control | 2019

furthermore it has a simple model-free form that simply follows the gradient of the action-value
function. In addition, it also shows that deterministic policy gradient is the limiting case, as policy
variance tends to zero, of the stochastic policy gradient.

The majority of model-free reinforced learning algorithms are based on generalized policy iteration:
interleaving policy evaluation with policy improvement. Policy evaluation methods estimate the action-
value function Q™ (s, a) or Q¥ (s,a) = h,, (s, a), for example by Monte-Carlo evaluation or temporal-
difference learning (TD). Policy improvement methods update the policy with respect to the (estimated)
action-value function.

A simple and computationally attractive method is to move the policy in the direction of the gradient of
Q. Specifically, for each visited state s, the policy parameter 9%*1 are updated in proportion to the

gradient Vgka (s, Ty (s)).
Equation 44
Vol (mg) = E{Vymy(s) V,Q"(s,a)| a = my(s)}

2.8 Actor-Critic Reinforced Learning

This section will give an explanation on all three groups, starting with critic-only methods. The notation
here may have some similar symbols with the quadcopter dynamics or even control, however they are
NOT related to each other. The part on actor-only methods introduces the concept of a policy gradient,
which provides the basis for actor-critic algorithms. The final part of this section explains the policy
gradient theorem, an important result that is now widely used in many implementations of actor-critic
algorithms.

In real-life applications, such as robotics, processes usually have continuous state and action spaces,
making it impossible to store exact value functions or policies for each separate state or state-action
pair. Any RL algorithm used in practice will have to make use of function approximators for the value
function and/or the policy in order to cover the full range of states and actions. Therefore, this section
assumes the use of such function approximators.

2.8.1 Critic-Only Methods

Critic-only methods, such as Q-learning and SARSA, use a state-action value function and no explicit
function for the policy. For continuous state and action spaces, this will be an approximate state-action
value function. These methods learn the optimal value function by finding online an approximate
solution to the Bellman equation. A deterministic policy, denoted by t: X — U is calculated by using an
optimization procedure over the value function

Equation 45

n(x) = arg max Q(x,u)

Page 46 of 69

Reinforced Learning for UAV Attitude Control | 2019

There is no reliable guarantee on the near-optimality of the resulting policy for just any approximated
value function when learning in an online setting. For example, Q-learning and SARSA with specific
function approximators have been shown not to converge even for simple MDPs. However, was shown
that convergence can be assured for linear-in-parameters function approximators if trajectories are
sampled according to their on-policy distribution. Nevertheless, for most choices of basis functions an
approximated value function learned by temporal difference learning will be biased. This is reflected by
the state-of-the-art bounds on the least-squares temporal difference (LSTD) solution quality, which
always include a term depending on the distance between the true value function and its projection on
the approximation space. For a particularly bad choice of basis functions, this bias can grow very large.

2.8.2 Actor-only Methods and the Policy Gradient

Policy gradient methods (see, for instance, the SRV [59] and Williams’ REINFORCE algorithms [60]) are
principally actor-only and do not use any form of stored value function. Instead, the majority of actor-
only algorithms work with a parametrized family of policies and optimize the cost defined directly over
the parameter scape of the policy. A major advantage of actor-only methods over critic-only methods is
that they allow the policy to generate actions in the complete continuous action space.

A policy gradient method is generally obtained by parametrizing the policy T by the parameter vector
9 € RP. Considering that both Equation 27 and Equation 33 are functions of the parametrized policy 1y,
they are in fact functions of 9, the gradient of the cost function with respect to 9 is described by

Equation 46
6] 67'[19
Vol = 5ny a9

Then, by using standard optimization techniques, a locally optimal solution of the cost J can be found.
The gradient V] is estimated per time step and the parameters are then updated in the direction of this
gradient. For example, a simple gradient ascent method would yield the policy gradient update equation

Equation 47
Upy1 = I + aq ik Vol

where a, ;> 0 is a small enough learning rate for the actor by which it is obtained that J(9x4+1) =

J(@p)-

The main advantage of the actor-only approach is their strong convergence property, which naturally
inherited from gradient descent methods. Convergence is obtained if the estimated gradients are
unbiased and the learning rates a, j satisfy,

Equation 48
o
Z“a,k=°° Zaczl,k<o°
k=0 k=0

Page 47 of 69

Reinforced Learning for UAV Attitude Control | 2019

A drawback of the actor-only approach is that the estimated gradient may have a large variance. Also,
every gradient is calculated without using any knowledge of the past estimates.

2.8.3 Actor-Critic Algorithms - Stochastic

Actor-critic methods aim to combine the advantages of actor-only and critic-only methods. Like actor-
only methods, actor-critic methods are capable of producing continuous actions, while the large
variance in the policy gradients of actor-only methods is countered by adding a critic. The role of the
critic is to evaluate the current policy prescribed by the actor. In principle, this evaluation can be done
by any policy evaluation method commonly used, such as TD(A), LSTD, or residual gradients. The critic
approximates and updates the value function using samples. The value function is then used to update
the actor’s policy parameters in the direction of performance improvement. These methods usually
preserve the desirable convergence properties of policy gradient methods, in contrast to critic-only
methods. In actor-critic methods, the policy is not directly inferred from the value function by using
m(x) = arg max, Q(x,u). Instead, the policy is updated in the policy gradient direction using only a
small step size a,, meaning that a change in the value function will only result in a small change in the
policy, leading to less or no oscillatory behavior in the policy as described in [61].

Figure 2.5: Schematic overview of an actor-critic algorithm.

. -4
f N { »
Critic — Reward
w, . o
|
/1
1
N '3 Y
u
Actor > Process
w o

Source: Grondman, Ivo et Al. (2012)

Figure 2.5 shows the schematic structure of an actor-critic algorithm. The learning agent has been split
into two separate entities: the actor (policy) and the critic (value function). The actor is only responsible
for generating a control input u, given the current state x. The critic is responsible for processing the
rewards it receives, i.e. evaluating the quality of the current policy by adapting the value function
estimate. After a number of policy evaluation steps by the critic, the actor is updated by using
information from the critic.

A unified notion for the actor-critic algorithms described here will be adopted. Remembering: The
notation here may have some similar symbols with the quadcopter dynamics or even control, however
they are NOT related to each other. Therefore, two actor-critic algorithm templates are introduced: one
for the discounted reward setting and one for the average reward setting. Once these templates are
established, specific actor-critic algorithms can be discussed by only looking at how they fit into the
general template or in what way they differ from it.

Page 48 of 69

Reinforced Learning for UAV Attitude Control | 2019

For both rewards settings, the value function is parametrized by the parameter vector 8 € R9. This will
be denoted with Vg(x) or Qg(x,u). If the parameterization is linear, the features (basis functions) will
be denoted with ¢, i.e.

Equation 49
Vo (x) = 87 ¢p(x) or Qg (x,u) = 07 p(x, u)

The stochastic policy is parameterized by 9 € RP and will be denoted with Ty (x, w). If the policy is
denoted with my(x), it is deterministic and no longer represents a probability density function, but the
direct mapping from states to actions u = 1wy (x).

The goal in actor-critic algorithms — or any other RL algorithm for that matter — is to find the best policy
possible, given some stationary MDP (Markov Decision Process). A prerequisite for this is that the critic
is able to accurately evaluate a given policy. The difference between the right-hand and left-hand side of
the Bellman equation, whether it is the one for the discounted reward setting or the average reward
setting, is called Temporal Difference (TD) error and is used to update the critic. Using the function
approximation for the critic and a transition sample (xj, Uy, k41, Xk+1), the TD error is estimated as

Equation 50
Ok = i1 + ¥V, (Xk41) — Vo, (xi)

Perhaps the most standard way of updating the critic, is to exploit this TD error for use in a gradient
descent update:

Equation 51
Ok+1 = Ok + acik6x Vo Vo, (xi)

where a.j > 0 is the learning rate of the critic. For the linearly parameterized function approximator,
this reduces to:

Equation 52
Ok+1 = Ok + a8, d(xy)

This temporal difference method is also known as TD(0) learning, as no eligibility traces are used. The
extension to the use of eligibility traces, resulting in TD(A) methods, is straightforward and is explained
next.

Using the critic updated formula 6,1 = 0y + a k6, VgVp, (xi) , as already shown above, to update the

critic results in a one-step backup, whereas the reward received is often the result of a series of steps.

Page 49 of 69

Reinforced Learning for UAV Attitude Control | 2019

2.8.4 Actor-Critic Algorithms - Deterministic

We consider a standard reinforced learning setup consisting of an agent interacting with an
environment in discrete timesteps. At each timestep dt the agent receives an observation xj, takes an
action uy, and receives a scalar reward 1. In all the environments considered here the actions are real-
valued u; € R™. In general, the environment may be partially observed so that the entire history of the
observation, action pair s = (xq,uq, ..., Ux_1,X;) May be required to describe the state. Here, we
assumed the environment is fully-observed so s}, = xj,.

The DDPG algorithm maintains a parametrized actor function (s|8™) which specifies the current policy
by deterministically mapping states to a specific action. The critic Q(x, u) is learned using the Bellman
equation. The actor is updated by following and applying the chain rule to the expected return from the
start distribution J with respect to the actor parameters:

Equation 53
Vor | ~ E{VerQ(x, ul0?)] x = x;, u = m(x;|67)}
= E{V,Q(x, ul0D)| x = xp,u = () X Vo m(x|60™)|x = x;}
[65] proved that this is the gradient of the policy’s performance.

One challenge when using neural networks for reinforcement learning is that most optimization
algorithms assume that the samples are independently and identically distributed. Obviously, when the
samples are generated from exploring sequentially in an environment this assumption no longer holds.
Additionally, to make efficient use of hardware optimizations, it is essential to learn in mini-batches,
rather than online.

2.9 Neural Network - Function Approximator

This chapter will introduce you to fully connected deep networks, known as Multi-Layer Perceptron
(MLP). MLPs are used for thousands of applications and thus are the workhorses of deep learning. The
major advantage of fully connected networks is that they are “structure agnostic.” That is, no special
assumptions need to be made about the input (for example, that the input consists of images or videos).
We will make use of this generality to use fully connected deep networks to address the problem of
quadcopter control.

While being structure agnostic makes fully connected networks very broadly applicable, such networks
do tend to have weaker performance than special-purpose networks tuned to the structure of a
problem space. However, for this work, it will be more than sufficient.

2.9.1 Whatis a Fully Connected Deep Network?

Exactly as described by O’Reilly (2019), fully connected neural network consists of a series of fully
connected layers. A fully connected layer is a function from R,,, to R,, . Each output dimension depends
on each input dimension.

Page 50 of 69

Reinforced Learning for UAV Attitude Control | 2019

Figure 2.6: A fully connected layer in a deep network
7 N\

—— o ——————————————————

/

P e e e e B B e e R P

~

(
0

N

:

\

\

4 ‘\
)
"

g

A
\
.‘

AL ST

“ 3

\\
\!

M
i)

- ———————————— - — = - - -

Source: O’Reilly (2019)

D

’

l/

J
o
(X
A

Y

¢

\
1
1
1
L}
1
L}
L}
|
)
|
)
1
1
1
E
1
L}
1
1
L}
|
L}
1
1
1
}
1
L}
U

Let x € R, represents the input to a fully connected layer. Let y; € R be the i —th output from the fully

connected layer. Then y; € R can be computed as follows:

Equation 54

yi =0o(Wixy + -+ WipXpy)

Here, o is the activation function of that neuron, and the w; are learnable parameters in the network.

The full output y is then:

Yy = U(Wl,lxl + o+ Wl,mxm) : J(Wn,lxl + o+ Wn,mxm)

Equation 55

Note that is directly possible to stack fully connected networks. A network with multiple fully connected

networks is often called a “deep” network as shown bellow:

Page 51 of 69

Reinforced Learning for UAV Attitude Control | 2019

Figure 2.7: A multilayer deep fully connected network

N7 O N 0 N7
AN\
Vibiil

() 7@
RS N
4 NV 4/

NN

&7
3 W A
Noer @ ¥
\ ~

NN S HE
NS e SRR KL e SR
N \\\Q\\&":%f’/ WRED

A4S
\\'\'V\lff'/ 0 SENANK WAL N, ! Q/‘V{‘,‘ll‘q‘ S
NTrere W SN W ST e X,
ER A Yot SRS N AR ST NN NX
Vi S WA @ Yy ‘1<}'-@»\“ /
R / A7 AN WA WA
DN RO G S e e 7 HX
gy OO e PSS S Al SIS SN N
yal 7 XA WA y LAV /
Gt WSS Vi s S o VY AL
RN
\ VAN

/7
SOSSN—] /7
X e SN\ /A N\

v‘\\\
\

Source: O’Reilly (2019)

As a quick implementation note, note that the equation for a single neuron looks very similar to a dot-
product of two vectors (recall the discussion of tensor basics). For a layer of neurons, it is often
convenient for efficiency purposes to compute y as a matrix multiply:

Equation 56
y=o0o(wx)
where sigma is a matrix in R,,»;,, and the nonlinearity o is applied componentwise.

2.9.2 Dropout Regularization

Dropout is a form of regularization that randomly drops some proportion of the nodes that feed into a
fully connected layer. Here, dropping a node means that its contribution to the corresponding activation
function is set to 0. Since there is no activation contribution, the gradients for dropped nodes drop to
zero as well.

Page 52 of 69

Reinforced Learning for UAV Attitude Control | 2019

Figure 2.8: Dropout randomly drops neurons from a network while training. Empirically, this technique often
provides powerful regularization for network training.

(a) Standard Neural Net (b) After applying dropout

Source: O’Reilly (2019)

The nodes to be dropped are chosen at random during each step of gradient descent. The underlying
design principle is that the network will be forced to avoid “co-adaptation”. Dropout prevents this type
of co-adaptation because it will no longer be possible to depend on the presence of single powerful
neurons (since that neuron might drop randomly during training). As a result, other neurons will be
forced to “pick up the slack” and learn useful representations as well. The theoretical argument follows
that this process should result in stronger learned models [64].

Page 53 of 69

Reinforced Learning for UAV Attitude Control | 2019

3. Methodology

Now we have all the necessary background to make this work done, however, how everything works
together? First of all, let’s remember the general structure and after that, we will go deeper in each

step.

So, as explained in the introduction, we are using DDPG Actor-Critic Reinforced Learning. The RL control
system will be dynamic changing the PID constants while trying to stabilize the quadcopter. The actor
and critic will be 2 different fully connected neural networks with the same input vector. The actor and
critic will be 2 different fully dense connected neural networks with 2 hidden layers. Results will be
compared over simple PID control tuned using parameter grid search method to selecting the gains.

3.1 Quadcopter Simulation - RL Environment
The mathematical model of the quadcopter is implemented for simulation in Python 3.X. The
parameters used are from the DJI Phantom 2 quadcopter [62].

Table 1: DJI Phantom 2 - Parameters

Variable Value Units
Ky 920 [rom/V]
Ky 9.5493/Ky, [V.s/rad]
Ty 0.04 [N.m]
Dy 0.0002 [N.m.s/rad]
T 0.12 [m]

Jm =1L, | 0.0000049 | [Kg.m?]

Wmax 1047.197 [rad/s]
np 2
mg 0.0055 [Kg]
Tg 0.12 [m]

€ 0.004 [m]
Cr 0.0048
CQ 0.00023515 -
Trot 0.014 [m]
p 1.225 [Kg/m3]
m 1.3 [Kg]
l 0.0175 [m]
L, 0.081 [Kg.m?]
L, 0.081 [Kg.m?]
I, 0.142 [Kg.m?]
Myor 0.025 [Kg]

For calculating the parameters k and b from the Quadcopter Mathematical Modelling item, the

following equations will be needed:

Page 54 of 69

Reinforced Learning for UAV Attitude Control | 2019

Equation 57
k = CrpAr?
b = CopAr?

2

where r and A = mr? are the radius and disk area of the propeller, respectively. So, k = 3.83 x 107

and b =2.25x 1078

The selected step-size is dt = 0.005 [s], each episode has 30 seconds and there are a total of 1000
episodes with random angular velocities and angular position initialization.

3.2 RL Reward method

The step-size dt executes a single simulation step with the specified actions and returns to the agent the
new state vector, together with a reward indicating how well the given action was performed. Reward
engineering can be challenging. If careful design is not performed, the derived policy may not reflect
what was originally intended. For this work, with the goal of establishing a baseline of accuracy, will be
used a reward to reflect the total quadcopter position error.

Translating the current error e; at time t into a derived reward ry_4 as follows [63],

Equation 58: Reward
Tieer = —clip(4 X 1073 Il + 2 x 107 *{lay || + 3 X 107*|lwy |l + 5 x 107 *[|ox |I)

where py, ai, w, and oy are error in position, linear acceleration, angular velocities and angular
position (Euler angles) respectively. The clip function clips the result between the [0,1] in cases where
there is an overflow in the error.

Since the reward is negative, it signifies a penalty, the agent maximizes the reward (and thus minimizing
error) overtime in order to track the target as accurately as possible. Rewards are normalized between
to provide standardization and stabilization during training.

3.3 Actor and Critic - Structure and Training

Let’s first talk about how to build the Actor Network. Here was used 2 ‘ReLU’ hidden layers with 50
hidden units each. The output consist of 3 continuous actions with ‘Linear’ activation representing each
controller constant [K,, K;, K4]. The structure is not optimized in any sense. Different number of nodes

and activation functions were tried, however hyper parameters were not deeply studied and changed.

In the final layer was used the normal initialization with u =0, 0 =1 X 10™* to ensure the initial
outputs for the policy were near zero.

Page 55 of 69

Reinforced Learning for UAV Attitude Control | 2019

Figure 3.1: Actor Neural Network architecture

PID Contants
Q00
A Hidden Layer 2
9]9]0]0]0]0]0]0]0]0510]0]0]0]0]0]0]0]0]0
Hidden Layer 1
>)O00000000: *TGCJ O0Q0O f’]f?

}
(__,-* (_-j' L_J“'Cj' S ':j G

Inputa

Source: Author

The construction of the Critic Network is very similar to the actor. The only difference is that the critic
network takes both the states and the action as inputs. According to the DDPG paper [65], the actions
were not included until the 2nd hidden layer of Q-network. Here, the Keras function Merge was used to
merge the action and the hidden layer together

Figure 3.2: Critic Neural Network architecture

Value
O
Hidden Layer 2
!
9]0]0]0]0]0]e]0]e]0510]0]0]0]0]0]0]0]0]0
'T‘ Hidden Layer 1
0]0]0]0]0]0]0]0]0]010]0]0]0]0]0]0]0]0]e

p
COO0-000 000

Source: Author

As in DDQN algorithm, a replay buffer to learn in mini-batches was also used. The replay buffer is a finite
sized cache R. Transitions were sampled from the environment according to the exploration policy and
the tuple (xp, Uk, %, Xx4+1) Was stored in the replay buffer. Then the replay buffer was full the oldest
samples were discarded. At each time step the actor and critic are updated by sampling a minibatch

Page 56 of 69

Reinforced Learning for UAV Attitude Control | 2019

uniformly from the buffer. Because DDDPG is an off-policy algorithm, the replay buffer can be large,
allowing the algorithm to benefit from learning across a set of uncorrelated transition.

Directly implementing Q-learning with neural networks was proven to be unstable in many
environments. Since the network Q(x, u|89) being updated is also used in calculating the target value,
the Q update is prone to divergence. The solution is a modified neural network for actor-critic and to
use “soft” target updates, rather than directly copying the weights. A copy of the actor and critic

networks was made, Q'(x,u|9Q’) and n'(x,@”’) respectively, that are used for calculating the target
values. The weights of these target networks are then updated by having them slowly track the learned
networks: 8 « 6 + (1 — 7)8" with 7 < 1. This means that the target values are constrained to change
slowly, greatly improving the stability of learning. This simple change moves the relatively unstable
problem of learning the action-value function closer to the case of supervisioned learning, a problem for
which robust solutions exist. This may slow learning, since the target network delays the propagation of
value estimations.

About normalizations, they were not applied. However, when learning from low dimensional feature
vector observations, the different components of the observation may have different physical units (for
example, positions versus velocities) and the ranges may vary across environments. This can make it
difficult for the network to learn effectively and may make it difficult to find hyper-parameters which
generalize across environments with different scales of state values.

A major challenge of learning in continuous action spaces is exploration. An advantage of off policies
algorithms such as DDPG is that the problem of exploration can be treated independently from the
learning algorithm. There are two techniques that could be used here: parameter noise or action noise.
However, is shown by [64] that add parameter noise to a neural network based actor/policy will bring
better results. So, this noise will be added through dropout normalization, in which random neurons are
deactivated. For each layer, the following dropout percentages were chosen. Remembering that other
parameter values were not tried.

Table 2: Dropout table

Hidden Layer Dropout
Hidden 1 5%
Hidden 2 5%

For the targets, a copy of the actor and critic networks was created and then used for calculating the
target values. The weights of these target networks are then updated by having them slowly track the
learned networks as shown below.

Finally, to summarize the method applied:

Page 57 of 69

Reinforced Learning for UAV Attitude Control | 2019

Algorithm 1 DDPG algorithm

Randomly initialize critic network (s, a|0%) and actor pu(s|0") with weights #9 and 6*.
Initialize target network Q" and u’ with weights 09 « 09, 0m" « o»
Initialize replay buffer I?
for episode =1, M do
Initialize a random process N for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action a; — (s, |0*) + N, according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state 544
Store transition sy, as, 7y, S5¢41) in R
Sample a random minibatch of N transitions (s;, a;, ;, 8;+1) from R
Sety; —r; + ?’Q’(SHI1#1(3:;+1|0“’}|ﬂq:}
Update critic by minimizing the loss: L = + 3" (y; — Q(s4,a:/09))?
Update the actor policy using the sampled policy gradient:

1
Vord 2 17 3 VaQ(o, al0%)losuamnton Vou (516",

Update the target networks:
09 < 769 + (1 - 71)0%
0" 70" 4 (1 7)0"

end for
end for

Page 58 of 69

Reinforced Learning for UAV Attitude Control | 2019

4. Results

4.1 PID Controlled Response

After using a parameter grid search, the following controller constants were found to give a good
response for a random step input:

[K,, K, K4] = [2,0.0005, 20]

Remember that only the angular velocities are controlled. The x, y and z position are not controlled.

Figure 4.1: PID controller response — 3D Coordinates

0.000000
—0.000025 |

—0.000050 1

X position [m]

—0.000075 1

—0.000100 1

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0

0.000

—0.005

—0.010

Y position [m]

—0.015

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0

= =
o o
N w

=
o
frt

Z position [m]

=
o
o

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0

Time [s]

Page 59 of 69

Reinforced Learning for UAV Attitude Control | 2019

0 [deg/s]

¢ [deg/s]

i [deg/s]

—0.00010

o
n

5.0

2.5

0.0

—2.51

=5.0

Figure 4.2: PID controller response — 3D path

—0.00008

SRR g ,00004

—0.00002
0.00000 —0.0175

Figure 4.3: PID controller response — Angular Velocities

o
[=)

0.0 0.5 10 15 2.0 255 30 35 4.0
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

Time [s]

Page 60 of 69

Reinforced Learning for UAV Attitude Control | 2019

4.2 Reinforced Learning Response - (RL + PD controller)
Remember that only the angular velocities are controlled. The x, y and z position are not controlled.

X position [m]

N
o

Y position [m]

Figure 4.4: Reinforced Learning controller response — 3D Coordinates

0.0 0.5 1.0 15 2.0 255 3.0 35 4.0

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

101.0

100.5

£ PUSILIUN LT

100.0 1

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Time [s]

Page 61 of 69

Reinforced Learning for UAV Attitude Control | 2019

Figure 4.5: Reinforced Learing controller response — 3D path

Figure 4.6: Reinforced Learning controller response — Angular Velocities

1.0
0.5
0.0 1

¢ [deg/s]

—0.5 1
=1.01

0.0 0.5 10 15 2.0 255 30 35

4.0

N S

] [deg/s]

[=}

0.0 0.5 1.0 15 2.0 2.5 3.0 35

4.0

¢ [deg/s]

—4

0.0 0.5 1.0 15 2.0 2.5 3.0 35

Time [s]

4.0

Page 62 of 69

Reinforced Learning for UAV Attitude Control | 2019

5. Conclusions

Thus, this work has shown us that is possible to control a quadcopter using Reinforced Learning
techniques. However, the model only converged for small angles, what makes impossible to compare
the original PID result with the Reinforced Learning results. However, we cannot say that PID is better
than RL or the opposite is true because the RL stability and response to non-linear conditions, payload
change as well as external perturbations were not tested.

In addition to, although deterministic gradient is simple and effective, it requires careful tuning of the
model hyper-parameters, specifically the learning rate used in optimization, as well as the initial values
for the model parameters and layer activation function type. The training is complicated by the fact that
the inputs to each layer are affected by the parameters of all preceding layers — so that small changes to
the network parameters amplify as the network becomes deeper.

For future works, is recommended to try parameter grid search optimization for the Reinforced Learning
control as well as mini-batch normalization. The normalization can be helpful in several ways, according
to [66]: First, the gradient of the loss over a mini-batch is an estimate of the gradient over the training
set, whose quality improves as the batch size increases. Second, computation over a batch can be much
more efficient than m computations for individual examples, due to the parallelism afforded by the
modern computing platforms.

Page 63 of 69

Reinforced Learning for UAV Attitude Control | 2019

10.

11.

12.

13.

14.

References

. WHAT is a Drone? Drone vs Quadcopter. Drone and Quadcopter, 2019. Disponivel em:

<https://droneandquadcopter.com/what-is-a-drone/>. Acesso em: 15 ago. 2019.

. UBIRATAN, E. A origem dos vant. Aeromagazine, 2015. Disponivel em:

<https://aeromagazine.uol.com.br/artigo/origem-dos-vant_1907.html>. Acesso em: 15 ago. 2019.

. DOHERTY, P.; RUDOL, P. A UAV Search and Rescue Scenario with Human Body Detection and

Geolocalization. Al 2007: Advances in Artificial Intelligence , p. 1-13, 2007.

. DE OLIVEIRA ANDRADE, R. O Voo do Falcdo. Pesquisa Fapesp, n. 211, set. 2013.
. SCUSSEL, A. Pesquisa revela dados sobre o mercado de VANTSs no Brasil. MundoGEO, abr. 2013.

. MARTINEZ, K. The History Of Drones (Drone History Timeline From 1849 To 2019). Drone Ethusiast,

2018. Acesso em: 15 ago. 2019.

. TENET, GEORGE; EX-DIRECTOR OF CIA. Non armed surveillance missions had been taking place over

Afghanistan since 2000. [S.1.].

. SINGER, P. W. Wired for War: The Robotics Revolution and Conflict in the 21st Century. Penguin,

New York, p. 34, 2009.

. WOODS, C. OK, fine. Shoot him.” Four words that heralded a decade of secret US drone killings. The

Bureau of Investigative Journalism, p. 47-48, nov. 2012.

BOWDEN, M. How the Predator Drone Changed the Character of War. Smithsonian Magazine , nov.
2013.

GOLDMAN SACHS RESEARCH. Drones. Goldman Sachs. [S.1.].

Estudo Sobre a Industria Brasileira e Europeia de Veiculos Aéreos Ndo Tripulados. Ministério da
Industria, Comércio Exterior e Servigos - Brasil. [S.1.].

DIVYA, J. Exploring the latest drone technology for commercial, industrial and military drone uses.
Business Insider, p. 13, jul. 2017.

CONVERTAWINGS Model A - 1956. Aviastar. Disponivel em:
<http://www.aviastar.org/helicopters_eng/convertawings.php>. Acesso em: 10 set. 2019.

Page 64 of 69

Reinforced Learning for UAV Attitude Control | 2019

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

DARACK, E. A Brief History of Quadrotors. Airspacemag, maio 2017.

HISTORY of Quadcopters and other Multirotors. KrossBlade Aeroespace. Disponivel em:
<https://www .krossblade.com/history-of-quadcopters-and-multirotors>. Acesso em: 12 set. 2019.

SILVA DE AZEVEDO, F. R. Complete System for Quadcopter Control, Porto Alegre, 2014.

SANTOS, M. C. P. et al. An adaptive dynamic controller for quadrotor to perform trajectory tracking
tasks. J. Intell. Robot. Syst., p. 5-16, 2019.

JAYAKRISHNAN, H. J. Position and attitude control of a quadrotor UAV using super twisting sliding
mode. IFAC Pap. Online, p. 284-289, 2016.

XIONG, J. J.; ZHENG, E. H. Position and attitude tracking control for a quadrotor UAV. ISA Trans.,
2014.

NADDA, S.; SWARUP, A. Improved quadrotor altitude control design using second-order sliding
mode. J. Aerosp. Eng., 2017.

MOAWAD, N. M.; ELAWADY, W. M.; SARHAN, A. M. Adaptive PID sliding surface-based second order
sliding mode controller for perturbed nonlinear systems. In Proceedings of the 12th International
Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, p. 19-20, dez. 2017.

GONZALEZ, I.; SALAZAR, S.; LOZANO, R. Chattering-free sliding mode altitude control for a quad-
rotor aircraft: Real-time application. J. Intell. Robot. Syst. , p. 137-155, 2014.

MULIADI, J.; KUSUMOPUTRO, B. Neural network control system of UAV altitude dynamics and its
comparison with the PID control system. J. Adv. Trans., p. 1-18, 2018.

MUSTAPA, Z. et al. Altitude controller design for multi-copter UAV. In Proceedings of the IEEE
International Conference on Computer, Communication, and Control Technology., Langkawi,
Malaysia, set. 2014.

SANTOS, M. F. et al. Simulation and comparison between a linear and nonlinear technique applied to
altitude control in quadcopters.. In Proceedings of the 18th International Carpathian Control
Conference (ICCC)., Sinaia, Romania, p. 234-239, maio 2017.

POUNDS, P. E. |.; BERSAK, D. R.; DOLLAR, A. M. Stability of small-scale UAV helicopters and
guadrotors with added payload mass under PID control. Auton. Robots, p. 129-142, 2012.

SALIH, A. L. et al. Modelling and PID controller design for a quadrotor unmanned air vehicle. In
Proceedings of the IEEE International Conference on Automation, Cluj-Napoca, Romania, maio

Page 65 of 69

Reinforced Learning for UAV Attitude Control | 2019

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

2010.

LI, J.; LI, Y. Dynamic analysis and PID control for a quadrotor. In Proceedings of the IEEE
International Conference on Mechatronics and Automation., Beijing, China, ago. 2011.

AHMED, A. H. et al. Attitude stabilization and altitude control of quadrotor. In Proceedings of the
12th International Computer Engineering Conference (ICENCO), Cairo, Egypt, dez. 2016.

KHAN, H. S.; KADRI, M. B. Attitude and altitude control of quadrotor by discrete PID control and non-
linear model Predictive control.. In Proceedings of the International Conference on Information and
Communication Technologies (ICICT), Karachi, Pakistan, dez. 2015.

BOLANDI, H. et al. Attitude control of a quadrotor with optimized PID controller. Intell. Control
Autom., p. 335-342, 2013.

THANH, H. L. N. N.; HONG, S. K. Quadcopter robust adaptive second order sliding mode control
based on PID sliding surface.. IEEE, 2018.

THANH, H. L. N. N.; NGUYEN, N. P.; HONG, S. K. Simple nonlinear control of quadcopter for collision
avoidance based on geometric approach in static environment.. Int. J. Adv. Robot. Syst. , 2018.

NGUYEN, N. P.; HONG, S. K. Fault-tolerant control of quadcopter UAVs using robust adaptive sliding
mode approach. Energies, dez. 2019.

NGUYEN, N. P.; HONG, S. K. Position control of a hummingbird quadcopter augmented by gain
scheduling.. Int. J. Eng. Res. Technol. , nov. 2018.

MILHIM, A. B.; ZHANG, Y. Gain Scheduling based PID controller for fault tolerant control of a quad-
rotor UAV.. In Proceedings of the AIAA Infotech@Aerospace, Atlanta, USA, abr. 2010.

GAUTAM, D.; HA, C. Control of a quadrotor using a smart self-tuning fuzzy PID controller. Int. J. Adv.
Robot. Syst., out. 2013.

GOODARZI, F.; LEE, D.; LEE, T. Geometric nonlinear PID control of a quadrotor UAV on SE(3). In
Proceedings of the European Control Conference (ECC), Ziirich, Switzerland, jul. 2013.

TAKAGI, T.; SUGENO, M. Fuzzy identification of systems and its applications to modeling and control.
IEEE Trans. Syst. Man Cybern., p. 116-132, 1985.

LIU, H.; SHI, P.; CHADLI, M. Finite-time stability and stabilisation for a class of nonlinear systems with
time-varying delay. Int. J. Syst. Sci., 2016.

Page 66 of 69

Reinforced Learning for UAV Attitude Control | 2019

42.

43,

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

ESTRADA, F. R. L. et al. LPV Model-based tracking control and robust sensor fault diagnosis for a
guadrotor UAV.. J. Intel. Robot. Syst. , 2016, p. 163-177.

RANGAJEEVA, S. L. M. D.; WHIDBORNE, J. F. Linear parameter varying control of a quadrotor. In
Proceedings of the 6th International Conference on Industrial and Information Systems,
Peradeniya, Sri Lanka, ago. 2011.

JOUKHADAR, A.; ALCHEHABI, M.; JEJEH, A. Advanced UAVs Nonlinear Control Systems and
Applications.

MALEKY, K. N. et al. A reliable system design for nondeterministic adaptive controllers in small uav
autopilots. Digital Avionics Systems Conference (DASC), p. 1-5, IEEE/AIAA 2016.

SANTOSO, F.; GARRATT, M. A.; ANAVATTI, S. G. State-of-the-art intelligent flight control systems in
unmanned aerial vehicles. IEEE Transactions on Automation Science and Engineering, 2017.

LUND, H. H.; MIGLINO, O.; NOLFI, S. Evolving mobile robots in simulated and real environments.
Artificial life, v. 2, p. 417-434, 1995.

JAGANNATHAN, S.; DIERKS, T. Output feedback control of a quadrotor uav using neural networks.
IEEE transactions on neural networks, v. 21, p. 50-66, 2010.

GUIRIK, A.; BOBTSOV, A.; BUDKO, M. Hybrid parallel neuro-controller for multirotor unmanned
aerial vehicle. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT),
8th International Congress on. IEEE, p. 1-4, 2016.

SHEPHERD llI, J. F.; TUMER, K. Robust neuro-control for a micro quadrotor. in Proceedings of the
12th annual conference on Genetic and evolutionary computation, 2010.

WILLIAMS-HAYES, P. S. Flight test implementation of a second generation intelligent flight control
system. infotech@ Aerospace, AIAA-2005-6995, p. 26-29, 2005.

LUUKKONEN, T. Modelling and Control of Quadcopter.

ALDERETE, T. S. Simulator Aero-Model Implementation. NASA Ames Research Center, California,
USA.

ORTEGA, M. G.; RAFFO, G. V.; RUBIO, F. R. An integral predictive/nonlinear H1 control structure for a
guadrotor helicopter. Automatica, v. 46, 2010.

BOUADI, H.; TADJINE, M. Nonlinear observer design and sliding mode control of four rotors
helicopter. Proceedings of World Academy of Science, Engineering and Technology, p. 225-230,

Page 67 of 69

Reinforced Learning for UAV Attitude Control | 2019

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

2007.

WASLANDER, S. L. et al. Quadrotor helicopter flight dynamics and control: Theory and experiment.
Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, ago. 2017.

HUANG, H. et al. Aerodynamics and control of autonomous quadrotor helicopters in aggressive
maneuvering. IEEE International Conference on Robotics and Automation, 2009.

DAYANA, P.; NIV, Y. Reinforcement learning: The Good, The Bad and The Ugly, 2008.

GULLAPALLI, V. A Stochastic Reinforcement Learning Algorithm for Learning Real-Valued Functions.
Neural Networks, v. 3, p. 671-692, 1990.

WILLIAMS, R. J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Learning. Machine Learning, v. 8, p. 229-256, 1992.

MOORE, A.; WILLIAMS, R. J. Gradient Descent for General Reinforcement Learning. Advances in
Neural Information Processing Systems 11, MIT Press, 1999.

MORBIDI, F.; CANO, R.; LARA, D. Minimum-Energy Path Generation for a Quadrotor UAV. IEEE
International Conference on Robotics and Automation, Stockholm, Sweden, 2016.

MANCUSO, R. et al. Reinforced Learning for UAV Attitude Control, 2018.
PLAPPERT, M.; HOUTHHOOFT, R.; ET. AL. Parameter Space Noise for Exploration, 2017.
SILVER, D.; ET. AL. Deterministic policy gradient algorithms. ICML, 2014.

IOFFE, S.; SZEGEDY, C. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shif, 2015.

Page 68 of 69

Reinforced Learning for UAV Attitude Control | 2019

Page 69 of 69

